
0I A6N FOR EMSEDDED SYSTEMS ISSUES NOD OUESTIONSCU) V/2
CRANEOIE-NELLON UNIV PITTSBURON PR SOFTWARE ENIINEERING
INST N H MEIDERNNN ET AL.. DEC S7 CN/SEI-87-TR-26

UNCLSSIFIE ES-TR-9?-109 F1962,S53-C-ON3 F/012/ M.

mmmmmhhhhhhl

mhhmhhhhh

1-0i -Jj i

2-0-

S.... - ' ,I3ISI"- lull l

1 -211111-

'Ill-,
- "-I I lli

' S.
~.1-..

%5

-' --. T..Wa Report - -

CD CMUISEI-87-TR-26
ESD-TR-87-189

- Carnegie-Mellon University

0') Software Engineering Institute

r

Ada for Embedded Systems:
Issues and Questions

Nelson HI. Welderman
Mark W. Borger

Andrea L Cappellini
Susan A. Dart

Mark H. Klein. Stefan F. Landherr
+ December 1987 DTIC

S ELECTEa
FEB 0 1988

*. * H

NO

'..

* 4,
A- -v- A.A

A~evd impub~ 8 22 07
Dintrbutin UrJ=dfS

Technical Report
CMU/SEI-87-TR-26

ESD/TR.87-189

December 1987

%

Ada for Embedded Systems:
Issues and Questions

Nelson H. Weiderman
Mark W. Borger ,

Andrea L. Cappellini
Susan A. Dart
Mark H. Klein

Stefan F. Landherr

Ada Embedded Systems Testbed Project

*. . a,.

Accession For

DNTIS GRA&I
DTIC TAH -"

,/Approved for public release. 0fA

yArl Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

i%

'K.!;

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731 "

The ideas and findings in this report should not be construed as an official DoD

position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Daniel Burton

SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by the Software Engineering Institute

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and polential contractors, and other U.S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Services For information on ordering.
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce. Springfield. VA 22161

Ada is a registered trademark of the U.S. Department of Defense, Ada Joint Program Office MicroVAX, VAX, VAXELN and VMS
are trademarks of Digital Equipment Corporation.

0~-~~0

Table of Contents
111. Introduction 1;%?

1.1. Purpose
1.2. Background 3
1.3. Previous Work 3

1.3.1. ARTEWG 4
1.3.2. Ada-Europe 4
1.3.3. AdaJUG 4
1.3.4. Benchmark Test Suites 5
1.3.5. The Evaluation and Validation Team 5
1.3.6. SofTech 5 ,V

1.4. Broad Issues and Questions 5

2. The Embedded Computing Systems Problem Domain 7
2.1. Characteristics of Embedded Computing Systems 7

2.1.1. Overview of the Embedded Systems Problem Domain 7
2.1.2. Definition of Embedded Computer Systems 8
2.1.3. Characterization of Embedded Computer Systems 8

2.2. Computing Problems Associated with Embedded Computer Systems 9
2.2.1. Multiprocessing 9
2.2.2. Distributed Processing 10
2.2.3. Input/Output 11
2.2.4. Modeling the Problem Domain 11
2.2.5. Operational Constraints 11

2.3. The Embedded Computer Systems Development Environment 12
2.3.1. Unique Development Requirements 12
2.3.2. Embedded Systems Tool Kit 13

2.4. Summary 13

3. Ada In Embedded Systems 15
3.1. Ada Real-Time Features 15 --

3.1.1. Concurrent Control 15
3.1.2. Time Control 17
3.1.3. Input/Output 17
3.1.4. Internal Representation 18
3.1.5. Error Handling 19
3.1.6. Numerical Computation 20

3.2. Issues and Questions 20
3.2.1. Concurrent Control 20
3.2.2. Time Control 22
3.2.3. Input/Output 22
3.2.4. Internal Representation 23
3.2.5. Error Handling 24 .'

3.2.6. Numerical Computation 25
3.3. Summary 25

CMU/SEI-87.TR-26 I
l e,

4. Ada Runtime Implementation Issues 31
4.1. Memory Management 32 JL

4.1.1. Storage Allocation 33
4.1.2. Storage Deallocation 36
4.1.3. Working Storage Limits 37
4.1.4. Storage Layout 38

4.2. Multitask Management 39
4.2.1. Concurrency Model 39
4.2.2. Task Scheduling 42
4.2.3. Task Synchronization and Communication 43
4.2.4. Shared Memory 45 V
4.2.5. Multiprocessors 45

4.3. Time Management 46
4.4. Subprogram Management 47

4.5. !nput/Output Management 48
4.6. Arithmetic 49
4.7. Exception Management 51
4.8. Pragmas 52
4.9. Chapter 13 Features 53

4.9.1. Clauses 53
4.9.2. Package System 54
4.9.3. Machine Code Insertion 54
4.9.4. Interfacing Other Languages 54
4.9.5. Eliminating Checks 54

4.10. Conclusion 55

5. Ada Embedded System Development Environment 57
5.1. Target-Independent Tools 57

5.1.1. Pretty Printer 57
5.1.2. Language-Sensitive Editor 57
5.1.3. Static Analyzer 58
5.1.4. Source Code Cross- Referencer 58
5.1.5. Test Manager 58
5.1.6. Configuration Manager 58 P
5.1.7. Module Manager 58
5.1.8. Browser 59

5.2. Target-Dependent Tools 59
5.2.1. Ada Cross-Compiler 59
5.2.2. Cross-Assembler 59 p
5.2.3. Unker 59
5.2.4. System Builder 60
5.2.5. Load Module Downloader/Receiver 60
5.2.6. Symbolic, Source-Level Debugger 60
5.2.7. Dynamic Analyzer 61
5.2.8. Simulator 61

CMU/SEI-87-TR-26

5.2.9. Real-Time Monitor 61

5.3. Summary 61

6. Summary and Preliminary Recommendations 69

6.1. Preliminary Recommendations 70
6.1.1. Recommendations for Application Developers 70
6.1.2. Recommendations for Program Managers 70
6.1.3. Recommendations for Compilation System Implementors 71
6.1.4. Recommendations for Ada Policy Makers 71

6.2. Future Work 71
6.2.1. Stand-Alone Tests 72

6.2.2. Algorithmic Experiments 72
6.2.3. Real Application 72 S

6.3. Conclusion 72

References 73

'/ 7Rp

t

(I CM/E-8-R2
;-,

:v'..r,,, ', .' .' =,. " ,...'='. " ..,, ".'_* .'-." ."-'2..." -',." " .. .--. r .. o.".-".."..".t ."r " : •.,.''- .; =- t',.','...-_' '. ",' ' '.''="",-,i

q

a,

-a

-, p

'a-

'-a

a-

a-
-a'.

-'I

'ala

'.1

-a,'

a-

-a

IV CMU/SEI-87-TR-26

* ba . - -* - a> %~a'a~..'KN.%> ~ . -.

-- S . ft a~ - U -

-ft

-ft

C-

I

"ft

* List of Figures
Figure 4-1: Aspects of an Ada runtime environment 32
Figure 4-2: A conceptual view of an Ada program's runtime memory 34 ~ft

9

*
'.5

&ft
'ft

C

'p

q'I
U-

~55

* I'

I
Up.

'p

'p

I'

-U

-5

-5

'p

~ft

'--5

Ut
-a

CMU/SEI-87-TR-26 v
-U'

5- 5-s -5-~
-5

Acknowledgerments

Acknowledgements:

This report has been a group effort with contributions from many people. Susan Dart wrote the initial
outlines and was the primary author for Chapter 4 and the annotated bibliography. Mark Borger and
Andrea Cappellini were primary authors for Chapters 3 and 5. Mark Klein and Stefan Landherr were
primary authors for Chapter 2. A. Nico Habermann made suggestions on form and substance that
were particularly helpful. In addition to the project members, Dennis Cornhill, Robert Ellison, Peter
Feiler, Vinod Grover, Hans Mumm, Jan Storbank Pedersen, Michael Rissman, and Jeffrey Stewart
read drafts of the report and contributed suggestions for improvements. Linda Hutz Pesante under-

took the painstaking task of editing the multi-author drafts to make them consistent and coherent.

Technical Editor: Nelson Weiderman V' .

Ada Embedded Systems Testbed Project Members:

Nelson H. Weiderman, Project Leader

Neal Altman

Mark W. Borger .

Andrea H. Cappellini
Patrick Donohoe

Mark H. Klein

Stefan F. Landherr

John Slusarz

Authors of the Report:

Mark W. Borger
Andrea H. Cappellini

Susan A. Dart

Mark H. Klein

Stefan F. Landherr

Nelson H. Weiderman

N-%

1%.

Nall

Ada for Embedded Systems:
Issues and Questions

Abstract: This report addresses issues and questions related to the use of Ada for em-
bedded systems applications; it contains some preliminary recommendations for compi-
lation system implementors, application developers, program managers, and Ada policy
makers. The issues and questions provide the context for the Ada Embedded Systems
Testbed (AEST) Project at the Software Engineering Institute, where staff members are .
investigating software development and performance issues for real-time embedded sys-
tems.

1. Introduction
, .'-4

1.1. Purpose
The purpose of this report is to provide a framework for articulating and investigating the issues and

questions related to the use of Ada for embedded systems applications. These issues and questions
provide the context for work on the Ada Embedded Systems Testbed (AEST) Project. The primary

purpose of the project is to use a hardware and software testbed to investigate software development

and performance issues for real-time embedded systems. The SEI testbed enables us to assess the .2-"

readiness of the Ada language and Ada implementations for developing embedded systems. It also
makes it possible for us to provide advice to contractors on how to address problem areas, advice to
vendors on what tools and features need to be provided, and advice to the DoD on what is possible , .,

with currently available commercial products. ,

The contents of this report will help us develop the criteria for expanding the testbed and for perform- S

ing evaluation work. As the issues, questions, and criteria become clear, we will implement the

strategy for addressing a subset of the issues and questions in the context of the project. This report
should not be considered a finished product, but rather a living document that will grow and become %

more refined as more issues and questions arise during the experimentation phase of the project.

This report deals with issues at a reasonably general level because to do otherwise would require
several hundred pages. The categories of issues will be enumerated, and various examples will be
given. We do not attempt to be exhaustive in enumerating every implementation option or runtime

feature. Based on our research into the issues and questions, we make some preliminary recom-
mendations for compilation system implementors, application developers, program managers, and .

Ada policy makers. These recommendations will be refined as we gain more experience with real
application systems implemented on real hardware/software configurations. Z

The report is intended as a consolidation and synthesis of existing work for a rather high-level

audience. We have presented the issues in a form understandable to managers and administrators
as well as to highly technical personnel. The report will indicate to compiler vendors the general

directions in which the technology should be going. References to previous work will be preferred "-
%%

over inclusion of the work in this report. J.

CMU/SEI-87-TR-26 1 I

'C4

The purpose of this chapter is to provide the context for the remainder of the report. In the following '

section, we present the problems in general terms. We then briefly describe previous and ongoing
work that explores related issues and questions. Finally, we discuss some broad questions to in-
dicate the type of issues of interest.

Chapter 2 describes the embedded system problem domain. It is important to recognize that the
real-time charactenstics and resource constraints impose vastly different requirements on the Ada
capabilit--s than do ordinary information system problems. It should also be noted that some of the
issues identified in the report are not unique to embedded systems, but they are included for com-
pleteness

"a"

Chapter 3 is concerned with Ada language issues from the point of view of the application developer. ,',

It deals with those features that specifically address embedded systems and also discusses the
tradeoffs involved in using or r.ot using these features.

Chapter 4 is concerned with the Ada language from the point of view of the compiler implementor. It r
focuses on 'he abstract machine which must be provided by the implementor in the form of runtime
services. These services include task management, storage management, exception management,
dnd interrupt handling. Because the language definition allows considerable latitude for the im-
plementor, there are numerous choices that must be made.

Chapter 5 is concerned with the support tools for developing software in the embedded system
domain. Because of the host-target configuration of this environment, there must be a varietv of tools
which do not exist when the target is the same machine as the host. The existence of these tools is Io
critical to the software development process.

Chapters 3 through 5 make it clear that there are many choices available to the participants in Ada
software development. The application developer chooses which Ada features to use. The im-
plementor chooses which machine-dependent Ada features to include, how to implement certain
difficult features, and what additional facilities to provide. The Ada program managers choose from
various compilers and associated tool sets with widely differing characteristics. The Ada policy
makers must decide which Ada tools are practical and when to mandate their use. Decisions must I.

also be made regarding funding support for the development of advanced tools.

Chapter 6 summarizes the major issues and questions for each of these groups and makes some -

preliminary recommendations. It also outlines the next steps for the project.

An annotated bibliography is included as an appendix to this report. It covers papers concerned with
the use of Ada in embedded systems, with particular emphasis on Ada runtime issues.

2 CMU/SEI-87-TR-26

-',

7.a

,-_-..

1.2. Background

In the last two years, Ada compilers have reached a state of maturity that justifies their use in produc-
tion applications that are not time critical [Foreman 87]. However, Ada software development envi-
ronments are lagging behind compilers in maturity and sophistication [Weiderman 87]. Many of them
lack tools and interfaces we have come to expect in modem development environments, but they are
still quite usable.

In conriast to Ada compiler and environment technology, the ability to use Ada in real-time embedded
systems is just now being explored. Several vendors sell compilers which generate code for em-
bedded systems targets such as the Motorola 68000 family, the Intel iAPX86 family, and the MIL-
STD-1750A microprocessors, but the state of embedded system support tools is uncertain. Since the
language was originally designed for embedded systems applications, it is critically important that the 3
SEI gain expertise in this area and evaluate the readiness of the tools and techniques for developing
and testing software for such applications. Furthermore, this expertise and the evaluation results
must be disseminated to the broad community.

muL

Embedded systems software is quite different from commercial data processing and most scientific
data processing software. It is frequently written in assembly language by hardware engineers rather
than software engineers. Software developers have to deal with odd hardware restrictions and con-
straints. The programs must be particularly efficient in order to respond to real-time inputs from a
variety of sensors. The ability of Ada, and particular Ada implementations for target machines, to
handle hardware dependencies must be demonstrated if Ada is to be employed successfully in em-

bedded systems.

Using Ada for embedded systems involves significant changes for developers. Programmers once
wrote systems entirely in assembly language and had complete control over every action and every -

byte of storage. More recently there has been a trend toward high-level languages, with real-time
executives providing certain runtime services; but programmers are still accustomed to a high degree .
of control. Ada is meant to raise the level of abstraction further in order to permit the resulting product
to be more cost-effective to produce, more maintainable over its lifetime, and more portable between
different systems. As a result, the Ada runtime system (normally supplied by the compiler vendor)
provides services previously supplied or controlled by the applications programmer. These services
include scheduling, synchronization, timing, and memory management. Thus, the major issue is
whether Ada technology can address the low-level efficiency and control problems of embedded
systems applications and, at the same time, be high-level enough to solve the problems of
modifiability, transportability, and cost-effectiveness.

1.3. Previous Work

A significant amount of research and development is being conducted with regard to using Ada for
real-time embedded systems. This section gives a brief overview of some of the more important and
visible efforts. Numerous references concerning this topic are included in an annotated bibliography
appended to this report.

CMU/SEI-87-TR-26 3

Ce" .- o .- = , ,r ,- d 0- . . • -%el.. "

1.3.1. ARTEWG
The most active and visible group raising questions and issues regarding the use of Ada for em-
bedded systems is the Ada Runtime Environment Working Group (ARTEWG). This group was estab-
lished in the spring of 1985 by SIGAda, a special-interest group of the Association for Computing
Machinery (ACM). The group was formed "to establish conventions, criteria, and guidelines for Ada
runtime environments that facilitate the reusability and transportability of Ada program components,
improve the performance of those components, and provide a framework which can be used to
evaluate Ada runtime systems" [ARTEWG 86a]. The ARTEWG is a volunteer organization consisting
of approximately thirty principal members, who have met quarterly since May 1985.

At the SIGAda meeting held in Charleston, West Virginia, in November 1986, the ARTEWG distri-
buted 5 reports which are the culmination of 18 months of work. The first, "A White Paper on Ada
Runtime Environment Research and Development" [ARTEWG 86a], provides some background and
an overview of the work of the group. An updated version of this report has been published in Ada
Letters as "A Framework for Describing Ada Runtime Environments" [ARTEWG 87a]. The second
report, "A Canonical Model and Taxonomy of Ada Runtime Environments" [ARTEWG 86b], provides
some of the basic definitions and concepts surrounding the Ada runtime model. The third is entitled
"A Catalog of Interface Features and Options for the Ada Runtime Environment" [ARTEWG 86c1. Its
objective is to "propose and describe the first of a common set of user-RTE interfaces, with which a
programmer can both request services of the RTE and tailor the RTE to meet application specific

requirements." The fourth report, "Catalog of Ada Runtime Implementation Dependencies"
[ARTEWG 86d], provides a single source for those areas of the Reference Manual for the Ada
Programming Language [LRM 83] which permit implementation flexibility. The fifth document is the
"First Annual Survey of Mission Critical Application Requirements" [ARTEWG 86e]. The purpose of

that report is to define the requirements of real-time embedded systems by using a common survey
instrument to collect information from a variety of applications.

1.3.2. Ada-Europe
J. C. D. Nissen and B. A. Wichmann are the primary authors of a report entitled "Guidelines for Ada
Compiler Specification and Selection" [Nissen 82], which provides a set of questions that can be used

to evaluate Ada compilers and runtime environments. While this report is not aimed at the embedded
system domain, the answers to the questions for any particular Ada implementation are important to
application developers in assessing Ada tools. L

.4,

1.3.3. AdaJUG
The Ada-JOVIAL Users Group (AdaJUG) is an outgrowth of the JOVIAL Users Group (which
predates Ada). This group, which has had over thirty meetings, is particularly oriented to real-time

embedded systems and their requirements. In two of their 1986 meetings [Graumann
86a, Graumann 86b], they held panel discussions of "Why Ada Insertion into Embedded Systems is
Failing." These panels have been organized, not to denigrate Ada, but to raise the difficult issues and %
questions related to this particular application area. The panels have emphasized the lack of maturity N

and efficiency of the currently available Ada compilers and runtime systems.
p..

4 CMU/SEI-87-TR-26

...

1.3.4. Benchmark Test Suites
R. M. Clapp et al, of the University of Michigan and the Performance Issues Working Group (PIWG)
of SIGAda have prepared and are distributing test suites of Ada programs. The tests have been
executed on a number of systems, but there is little data for embedded system targets. The theoret-
ical basis for timing and calibration of these tests is documented in the Communications of the ACM
[Clapp 86]. The PIWG group has held workshops on performance issues [Squire 85, Squire 86]; the
benchmark tests have been distributed to over 100 sites; and the group is coordinating the collection
and reporting of the data being received. The MITRE Corporation also has developed a series of
tests for an Ada runtime environment supporting JAMPS [Ruane 85].
1.3.5. The Evaluation and Validation Team

The Evaluation and Validation (E&V) team was established under the auspices of the Ada Joint S

Program Office (AJPO) in June 1983 [E&V Team 84a]. The goal of the E&V team is to develop the
tools and techniques that will provide a detailed and organized approach to assessing Ada program- p

ming support environments (APSEs). Most notable of the work is the report on the requirements for
APSEs and the prototype Ada Compiler Evaluation Capability (ACEC). They are in the process of
funding a full ACEC which will address many of the questions raised when Ada is used for embedded I

systems. Among their more relevant reports are the "Requirements for Evaluation and Validation of
Ada Programming Support Environments" [E&V Team 84b] and the "E&V Classification Schema
Report" [TASC 86]. "

1.3.6. Sor/ech
A series of technical reports written by V. Grover and N. Lomuto [Grover 83, Grover 85a, Grover
85b, Lomuto 82, Lomuto 83] have provided significant insights into the issues and questions de-
scribed in this report. Those reports deal with the Ada runtime in general, options for Ada implemen-
tations, possibilities for a user-tailorable runtime "kit", and the design of real-time systems in Ada.

1.4. Broad Issues and Questions

To provide a foundation for the more detailed issues raised in subsequent chapters and to set the
stage for these chapters, we will itemize here some of the most important issues and questions
related to the use of Ada in embedded systems. ,

* Are the Ada implementations for tasking, exception handling, and interrupt handling fast
enough to be used in time-critical applications?

" Are Ada runtime environments small enough to reside with embedded applications on
typical military processors?

* Are the Ada timing mechanisms sufficiently precise for periodic scheduling of embedded
system activities?

" Can the Ada runtime environments be tailored by the user or compiler vendor so that the , .

user does not have to pay time and space performance penalties for features of the
language that are not used? -

" Is it practical and desirable to provide highly optimized runtime support primitives (e g,
Ada packages containing semaphores and high-precision timing) to supplement or re- S
place predefined language constructs?

* What is the current corrpile-time and runtime performance of Ada cross-compilers?
What is the quality of the generated code?

CMU/SEI-87-TR-26 5

" "I 1 ' 1% *I * p V'I " "% % I

"JI1.-jr-r.UN .sl _J. "- -i K..V T -.-

I

" What is the current state of the tools for supporting development and testing of em-
bedded systems? Are there intelligent linkers? Can code be put into read-only memory
(ROM)?

" Should embedded systems programmers be willing to give up some of the control of the
runtime environment in order to obtain the benefits of the software engineering principles
gained with Ada?

" Is there a danger that the proliferation of Ada runtime environments and Ada tool sets will
have as deleterious an effect on portability and reusability as the proliferation of lan- -
guages had in the 1970s?

A fundamental issue is the ability of Ada and Ada-based software engineering tools to satisfy the
conflicting requirements of generality (the ability to solve problems in a wide range of applications and
over a wide range of embedded systems) and efficiency (the ability to use limited resources in an
expedient manner). It is this challenge that must be addressed by all participants in the embedded
system community.

6. S,
I..

-..

6 CMU/SEI-87-TR-26

2. The Embedded Computing Systems Problem Domain
The purpose of this chapter is to describe a set of computing problems that are characteristic of
software in the real-time embedded systems problem domain. Some of these problems are not
unique to this domain, but they are important nevertheless. We will also identity the tools of a
development environment that are required specifically for this problem domain. This will set the
stage for analyzing Ada's viability in this arena.

The goal of this chapter is not to provide an exhaustive coverage of the entire embedded systems
domain. Rather, it will focus on those embedded systems in which constraints on computing .,
resources are important factors. Section 2.1 characterizes the embedded systems problem domain.
Section 2.2 describes a set of computing problems associated with this problem domain. Section 2.3
briefly enumerates developmental requirements and tools that are unique to this problem domain.

2.1. Characteristics of Embed led Computing Systems
2.1.1. Overview of the Embedded Systems Problem Domain U
The parent domain is the realm of complex, heterogeneous, industrial and military systems, such as

process-control systems, robotic systems, avionic systems, weapon systems, and C31 systems.
These systems consist of subsystems that interact and operate in parallel. Historically, these subsys-
tems were manual, mechanical, electro-mechanical, or hydraulic. Electronic digital processors (i.e.,
computers) were introduced into these systems because of their greater flexibility, potentially greater
numerical accuracy, and potentially greater computing power. %

The digital processing subsystem is one of the subsystems embedded in the larger system-hence, it,%
is referred to as the embedded computer system (ECS)-and it must interact with and operate in *%

parallel with the other subsystems. The other subsystems may be sensors, actuators, displays, or
recording devices. The ECS may be required to interface with these other subsystems in a variety of
ways, such as through A/D or D/A converters or by direct electronic signals. This type of complex
interaction is characteristic of the mission-critical computer resources (MCCR) often found in corn-
mand and control or weapon systems.

A system containing an ECS generally has greater functionality and versatility because of the proc-
essing power and the programmable nature of the digital processor(s). However, there are difficulties
in inserting computers into real-world systems and developing the software for them, as evidenced by
the all too many projects that are late, over budget, only partially successful, or outright failures-the
so-called "software crisis."

There are many reasons why developing software for an ECS is so difficult. One is the phenomenon -

of "creeping expectations"; more and more system functions, especially the difficult and poorly under- ,...
stood ones, are allocated to the ECS. Another, more fundamental reason is that concurrency is
natural for "physical" subsystems but is a mismatch with von Neumann style digital processors (i.e.,
the vast majority of current computers). Another reason is the lack of adequate tools to handle the 0
sheer complexity of specifying, designing, coding, and testing the software components of an ECS.

CMU/SEI-87-TR-26 7 .5..

2.1.2. Definition of Embedded Computer Systems
The first step in characterizing embedded computer systems is to formulate a clear definition. Be-

cause of the complexity of the topic, many definitions of an ECS have been proposed. Two of these
are listed below:

" An ECS is "a component of a larger system and provides computation, communication,
and control functions for that system. ECSs are often implemented using microproces-
sors and often incorporate concurrency and interrupt-driven real-time processing"
[Fairley 85, p. 229).

" An ECS is "a computer system that is integral to a larger system whose primary purpose p

is not computational; for example, a computer system in a weapon, aircraft, command
and control, or rapid transit system" [IEEE 83, p. 18].

The following definition has been adopted for the purposes of this report:

An embedded computer system (ECS), consisting of microprocessors and resident soft-
ware, is an integral component of a larger system whose primary purpose is not necessarily
computational. The ECS provides real-time computation, communication, and control func-
tions for the encompassing system. N

2.1.3. Characterization of Embedded Computer Systems
Although there is great variability in embedded computer systems, it is possible to extract a number of
significant characteristics.

,.!

ECSs have several characteristics in common with most other computer systems. Systems must be:

" Functional: The ECS must perform all the required functions.

" Correct: The ECS must produce correct results from valid inputs.
* Robust: The ECS must handle imperfect inputs in a reasonable manner.

" Secure: Often the ECS must provide some security features (e.g., a C31 system).
* Economical: The ECS must be economical to design, implement, maintain, and use.

" Adaptable: The ECS must be adaptable to corrections, improvements, and modifications

to the operating environment.

There are a number of characteristics that distinguish an ECS (especially the small-to-medium ECS

emphasized in this report) from other types of computer systems. In any particular ECS, each of the

characteristics listed below is present to some degree.

" Real-Time Operation: The ECS is nearly always required to interact with the overall
system in real time. "Real-time software works in a time-critical environment to control
some system of devices" [Allworth 81, p 31. "Real-time software measures, analyzes and p.

controls real-world events as they occur [Pressman 82, p 14J. Real-time may imply
"hard" timing requirements, where any missed deadline will result in system failure, or
"soft" timing requirements, where a missed deadline need not result in system failure.

" Physical Constraints: Often there are severe size, weight, and power limitations. In addi-
tion, tolerance to environmental extremes may be required (e.g., shock, vibration, radia- ..
tion, humidity, and temperature).

* Complex Interfaces: The ECS is usually interfaced to a heterogeneous set of devices,
some of which may be unique to the particular application. Furthermore, both inputs and
outputs may be periodic, randomly distributed in time, or may occur in sporadic bursts.

* Criticality: Often the ECS is part of a critical system, in which a failure could have

8 CMU/SEI-87-TR-26

W', ~~ W* ~ V~~ ~ V'. v.. . ~.vw., =',,''

serious safety or economic consequences. The system, and hence the ECS, is often
required to operate nonstop for extended periods. The ECS frequently endows the entire
system with the nature of its behavior and thus is a critical component whose integrity ,, .
affects the integrity of the larger system.

*Parallel Development: Often ECS software and system hardware are developed simul-
taneously. "
Novelty: Often the entire system development (and especially the ECS development) is
a first-of-a-kind attempt to grapple with a poorly understood or poorly specified problem.

2.2. Computing Problems Associated with Embedded Computer
Systems

This section presents a summary of the computing problems associated with embedded computer
systems software. If Ada is to be considered a suitable language for constructing ECS software, it
must provide facilities to appropriately handle the problems discussed below. A discussion of Ada's ,
suitability with respect to this set of computing problems will be presented in Chapters 3 and 4.

Our working definition of an ECS leads to the generic requirement that one or more microprocessors -1

with limited processing power and memory must simultaneously sense, process, and control multiple,%

environmental parameters in real time. A number of computing problems are generated by this J,
generic requirement. Simultaneous control of multiple parameters introduces the problem of concur-
rency. Concurrent processing can be simulated on a uniprocessor by appropriate scheduling of CPU
usage. Concurrent processing may also be implemented by a communicating set of dedicated distri- ..
buted processors. Control of environmental parameters with limited processing power, memory, and
input/output capabilities introduces the general problem of resource allocation. I/O interactions tend ,SS.
to occur with a set of heterogeneous devices; and the overall complexity of the application will, in
general, require mechanisms for abstractly modeling the environment.

The computing problems associated with embedded systems have been divided into the following N

categories: multiprocessing, distributed processing, input/output, and modeling the problem domain.
" 4,

Discussion of these areas is followed by a discussion of the constraints imposed on real-time sys-
tems.

2.2.1. Multiprocessing
For multiple activities that proceed in parallel, it is natural to use a model that employs parallelism. " -

Multiprocessing allows one to logically view independent threads of execution as proceeding in paral- . -

lel. However, the parallel model gives rise to a set of computing problems. Multiple processes
functioning in a coordinated fashion require interprocess communication. Multiple processes will also
vie for limited resources. We have divided the multiprocessing problems into three major categories.
problems relating to interprocess communication, problems relating to scheduling the CPU, and prob- .

lems relating to resource allocation.

1. Interprocess Communication
* Controlled Data Sharing: Interacting processes may need a mechanism for ac-

cessing common data. Maintaining the integrity of this shared data requires
mutual exclusion facilities.

CMU/SEI-87-TR-26 9 'S ,
"--'

-.- ,t, . ,%- 5 ,, . :- " - .' , ' = ".--S.,, .,.'.''-'\ ,,",'~, 4 ' * "-". , , ", " ''' ' ,,,. ,-'x r r , , , 'P

° 'p

.-

* Process Synchronization: Interacting parallel processes often have points where
processing must be synchronized between two or more processes. A mechanism '-

must be provided for one process to wait on an event which may be signaled by
another process and for a process to signal another that an awaited event has
occurred.

2. Process Scheduling
" Process State Management: All scheduling disciplines require management of

the state of all existing processes. In general, a process can be executing, ready
to execute, or waiting for a resource or event to occur before it can become
eligible (or ready) to execute. If an executing process needs a resource (for ex-
ample, if it is waiting for I/O), the processor should be used by another ready
process.

" Interrupts: Both time-slicing and event-based scheduling require that the CPU be
interrupted. Interrupts must be controllable to prevent interruption of a critical sec-
tion.

" Real-Time Clocks: Since all time-slicing mechanisms require a cognizance of
time, access to a clock is necessary.

" Process Priorities: Preemptive, priority-based scheduling requires that processes
be assigned priorities. It is conceivable that these priorities may change as a
function of time and state, requiring dynamic assigning of priorities.

3. Resource Allocation
" CPU Allocation: Care must be taken not to impinge upon the real-time require-

ments of the system. For example, if critical sections are implemented, they must
be short enough so that they do not unnecessarily delay other processes. In
general, usage of the CPU by the runtime system must be predictable. The
multiprocessing overhead should be independent of the number of processes.
(See also Process Scheduling.)

" Memory Allocation: Both static (at compile/link time) and dynamic (at runtime)
allocation of memory may be required. Dynamic allocation must be efficient in
time and space. Memory deallocation (garbage collection) must be efficient, con-
trollable, and predictable.

* Device Allocation: Like memory allocation, device allocation may be static (at
system build time) or dynamic. Because devices must be available when they
are needed, they must be allocated ahead of time.

2.2.2. Distributed Processing p
The previous section considered multiprocessing from a logical point of view, independent of a partic-

ular physical implementation. When implementing multiprocessing in a distributed environment, sev- -.

eral additional problems not previously mentioned must be considered. Although the CPU is less of a

limited resource in this environment, coordination of multiple processes now involves the added com-
plication of communication between processors. The cistributed processors may exhibit various de- . -

grees of coupling. Loosely coupled processors may act relatively independently, communicating only

by messages passing over a network. Alternatively, they may be more closely coupled, sharing
memory and I/O buses. For each of the major categories previously listed, we describe below the

peculiarities introduced in a distributed environment.

* Interprocess Communication: In a distributed environment, the extent of processor cou- S
piing and the potential heterogeneity of multiple processors become issues. In a closely .-

-'8p

10 CMU/SEI-87-TR-26 .,
-5

• % .. ,o . .. ".. ,.. * * ". o=•'.- -,. %-. %",*. %/ o %=% % ... " % ° "° %, =. %, . " .. -. . . • ° - .. -. . S

,. ,°" , "" ,. -. " . • • , * % .," ' "- "% 4"• ,* o 1 P,,=,P " , ° " = rl " .,, " • 2 ' ., "=, _4

coupled system, data may be shared through common shared memory. In a loosely
coupled system, data sharing may require message passing. These issues affect com-
mon data access and process synchronization. 1
Process Scheduling: Managing processes across a distributed network may require
more sophistication than a process table commonly used in a uniprocessor configuration.
In addition, for the entire distributed system to have the same notion of time, either
dedicated clocks must be synchronized or a central clock must be accessible.
Resource Allocation: In a closely coupled system, memory may be shared, requiring
processor coordination for memory allocation. Timely interprocessor communication be-
comes an important factor in coordinating device allocation in a distributed environment.

2.2.3. Input/Output
Embedded computer systems tend to be input/output intensive; they are often interfaced with many
heterogeneous devices and are often required to handle different types of I/O. Also, each class of 0
processor has its own peculiarities regarding I/O.

e L nw-Level Input/Output: I/O ports and registers must be directly addressable in order to
ii,,erface to specialized (custom) devices. In addition, it must be possible to write inter-
rupt handlers that appropriately handle nondeterministic events.

* Data Representation: Data from special-purpose devices may be encoded in special j
ways. Mechanisms to convert the data to other representations or to provide access at
the bit and byte level is imperative.

2.2.4. Modeling the Problem Domain
As the complexity of problems increases, the ability to model a problem in its own terms and to
abstract problem details becomes increasingly important.

" Numeric Computation: An ECS must be able to represent real-world entities and quanti-
ties and to perform related manipulations and computations. Thus, there should be
support for numerical computation, units of measure (including time), and calculations
and formulae from physics, chemistry, etc.

* Cognizance of Time: Process scheduling and similar runtime activities require precise
measurement of time intervals. In addition, nearly all ECSs require an accurate time-of-
day clock for proper interaction with the outside world.

2.2.5. Operational Constraints
It should be recognized that the problems summarized above have associated constraints; the prin-
cipal one is time criticality, which is compounded by limited processing power and memory con- '

straints.

o Time Criticality: An ECS must provide specified amounts of computation within required
time intervals. The consequences of missing a real-time deadline can vary from reduc-
tion of throughput to numerical inaccuracy to partial loss of system functionality, or even
to total system collapse. Therefore, the time taken to perform system functions such as
process initiation, process termination, and context switching is crucial in a real-time
multiprocessing system. System start-up time is also important, as is the time taken to
change operating modes, to reconfigure the system after a partial failure, or to restart the
system after a total failure.

o Reliability: An embedded system may have to operate nonstop for an extended period of
time. In applications such as NASA's space station, the software must remain opera-
tional even during installation of revisions. Predictable exception handling for expected

CMU/SEI-87-TR-26 11

% %

errors (e.g., invalid inputs) is required. Tolerance for unexpected errors (e.g., hardware
failures) is also desirable.

*Limited Resources: Apart from processor speed, memory and I/O capabilities may be
limited. Limited memory must be used economically. Operating systems support will be
minimal; typically only a kernel of runtime services can be accommodated.

2.3. The Embedded Computer Systems Development Environment

The development of ECS software has many aspects in common with the development of software
for other types of systems. The programming language and the development environment must
support the design, implementation, and testing of a complex software product, often for a poorly
understood or poorly specified problem. Therefore, the language and environment should provide
support for abstract data types and the ability to develop software in stages through separate compi-
lation, incremental build and test, and rapid prototyping.

However, software development for an ECS also presents a set of problems that place unique re-
quirements on a supporting development environment. These problems are primary ramifications of
the fact that the target execution environment is different from the host development environment.
Some of the tools required for an ECS development environment are described in Chapter 5.

2.3.1. Unique Development Requirements

" Host-Target Environment: A small-to-medium ECS, such as the ones considered in this
report, usually executes on dedicated processor(s), with minimal or no operating system
support and with little or no disk storage. Such computers are not suited to software
development. Therefore, ECS software development requires hardware and software
tools not often needed when constructing other types of software. The basis of this work
is a host-target development environment in which the majority of the software tools
reside on the host computer.

" Target Simulation on Host: Sometimes the target computer itself is developed in parallel
with the ECS software to allow meaningful software testing, It is necessary to have a
simulation of the target computer available on the host computer. N

" Non-Invasive Testing: The usual technique for monitoring, measuring, and testing com-
puter software is the use of a symbolic debugger; but this approach affects the time and
space behavior of the program that is under examination. Such perturbations can
usually be tolerated when subsets of the program are being developed, but they cannot
be tolerated in certain time-critical areas of the program, nor when the complete program
is subjected to a full-load test. In these cases, independent hardware instrumentation
facilities, such as logic analyzers and in-circuit emulators, are commonly used.

" Custom Testbed: Development and testing of ECS software requires a testbed incorpo-
rating actual devices as well as extensive instrumentation facilities.

* Testing and Verification: In general, testing and verification of ECS software is more
difficult than that for other types of software:

, Anticipating all "real life" scenarios is difficult.

* Setting up the testbed and using it to simulate "real-life" scenarios can be difficult.
, Non-invasive testing is difficult, but it is necessary for credible results.
* Error manifestations are often difficult, or impossible, to reproduce. -

12 CMU/SEI-87-TR-26

2.3.2. Embedded Systems Tool Kit
As with any software, the development of ECS software is facilitated by good tools for specifying

complex problems, designing complex software, and managing large software projects. Developers

need a high-level language in order to cope with the complexities of the application and a compiler

that produces efficient machine code. In addition, the development of ECS software requires some

specialized tools, such as the following:

" cross-compiler and cross-assembler, executing on the host

" specialized linker and downloader
" real-time executive or runtime kernel
" symbolic remote debugger, executing on host and controlling target machine

* performance analyzer

" sensor simulators

These tools will be discussed in more detail in Chapter 5.

2.4. Summary

The embedded systems problem domain involves a characteristic set of problems. These problems

are both computational and developmental. The computing problems are typically addressed by

special real-time operating systems or runtime systems of a language. The development problems

are addressed by appropriate features of the programming language or by the special tools of the

programming environment. The general problems discussed in this chapter will be analyzed in the

context of the Ada language in the following chapters.

,Ilk t

',.

CMU/SEI-87.TR-26 13

L-. L%"

JI

S.

'S

P. .5

*5

S..

I

V

4
.5

5~~

5-

- ii.

1'
'S

.1*~*

5.5

5%

'5.

-"1
-: 7.. *~

I. -

'.1~

'.1*5~

B

14 CMU/SEI.87.TR-26
.. ~ -,.--~

CC .*.5

~YZ~AY - C-C- 5~*

3. Ada in Embedded Systems
The purpose of this chapter is to show how some features of Ada specifically address the real-time :.el

embedded system problem domain from the point of view of the application developer. The chapter
is organized into two sections. First, we discuss Ada real-time features, as defined in ANSI/MIL-
STD-1815A [LRMJ that are relevant to problems in the embedded system domain characterized in
Chapter 2. Second, we discuss the issues, questions, and programming alternatives (including the
corresponding tradeoffs) relative to using Ada's real-time features in an embedded system.

3.1. Ada Real-Time Features

The Ada language was designed as a common high-order language for programming large-scale and

real-time systems. In keeping with the theme of investigating the issues related to the use of Ada for .,.

embedded systems applications, this section discusses, from a real-time application developer's
viewpoint, specifically how the Ada language addresses the embedded system problem domain. Em-
phasis is on its real-time features (e.g., tasking, exceptions) rather than on its modern software engi-
neering features (e.g., packages, generics). Paramount in this discussion are the following issues:

" concurrent control of system components (e.g., multitasking, synchronization)
" time control (e.g., time deadlines, accurate time measurement)
* input/output (e.g., interrupt handling, polling)
& control over internal representations of data, error handling (e.g., error detection and

recovery)
* numerical computation

3.1.1. Concurrent Control
As discussed in Chapter 2, one of the requirements for embedded software is parallelism. Ada
provides a mechanism called a task that supports this capability [LRM, Chapter 91. A task is one of
Ada's four primary program units, the others being subprograms, packages, and generic units. An
Ada task is similar in form to a package; both are comprised of two textual parts: a specification that
describes its external appearance (i.e., callable interfaces) and an executable body which defines its
internal behavior. The major difference between these two units is that a package is a passive
construct that provides visibility control, whereas a task is an active construct that provides the capa-
bility of parallelism. Ada tasks can be created statically. Moreover, since a task specification
declares a task type, tasks are objects that can be created dynamically at runtime and can also be ".'-

components of other data objects such as records and arrays.

With multiple tasks executing independently, the software must provide a facility for communication 0
and synchronization. Task communication in Ada is called rendezvous. Two tasks execute inde- N%
pendently until the time when they must synchronize (e.g., rendezvous) and possibly exchange data.
Once the rendezvous is complete, the tasks continue their independent execution. For a rendezvous
to take place, one task calls another task. The client task, say Task A, calls an entry, declared in the
specification of the server task, say Task B. For every entry declared, one or more associated accept
statements will be given in the body of Task B. Each accept statement has an optional body whose
code is executed during the rendezvous. This sequence of statements is delimited by the reserved

CMU/SEI-87-TR-26 15

-',%

words do and end. The rendezvous is executed at the higher of the priorities of the client and server
tasks.

Since real-time software typically must handle an unpredictable sequence of operations, decisions
about task rendezvous may have to be made at runtime. The construct in Ada that provides this
option is the select statement, different forms of which are used by clients and servers. There are
three kinds of select statements: selective wait, conditional entry call, and timed entry call (discussed
in Section 3.1.2). The selective wait involves selecting one accept from several alternatives. When a

server task reaches a selective wait statement, it may rendezvous with any of the possible entries in a
nondeterministic manner, i.e., there is no language-defined rule as to which rendezvous will be cho-
sen. The selective wait guarantees that one of the immediately possible rendezvous will be per- ,"

formed if there are any. A variation of the selective wait statement allows the programmer to control
which rendezvous will be eligible for selection. A guard (Boolean expression) is placed before the
accept, and only when the guard is true will the corresponding rendezvous be considered eligible.

The conditional entry call, which involves only one entry call, has two branches. The first branch is an
entry call; the second is an else alternative, which is just a sequence of statements. When a client
task reaches a conditional entry call, the first branch is chosen if the rendezvous can be performed
immediately; otherwise, the second branch (else alternative) is chosen and executed.

Task termination in Ada can be complex. One must be aware of the parent-child task dependencies

and other situations that influence the termination of a task (Chapter 4). Two mechanisms for ter-
mination are provided: the abort statement, which permits a task to be terminated from any point in

the program where the task is visible; and the terminate alternative in a select statement, which will
be executed it no other alternatives are possible and if conditions warrant task termination. The
detailed issues surrounding Ada task termination are well documented [Barnes 84, Borger
86, SofTech 84J and will not be covered here.

In some real-time applications, it may be necessary to know how much storage a task object is

allocated or what state a task is in. Ada has special operations, called attributes, which can provide
that information [LRM, Annex A]. The attributes CALLABLE and TERMINATED provide information

about the state of a task. The COUNT attribute yields the number of entry calls waiting for a partic- V
ular entry. The attributes SIZE and STORAGESIZE provide information about storage assignments
for task objects and types. These attributes can also be used in length clauses (discussed in Section
3.1.4) to specify an exact size (amount of storage) to be associated with a task type. Finally, the
ADDRESS attribute yields the first machine code address associated with the body of a particular

task type.

Ada provides mechanisms for ranked tasks and shared variables. Real-time systems typically have
several functions that need to be performed simultaneously. The computer resources may be such
that it is not possible to handle every function at a given time. With this in mind, Ada provides a
predefined pragma (i.e., compiler directive), namely PRIORITY, for associating a priority with a task
[LRM, Annex B]. Another predefined pragma that may be helpful for the applications programmer is
SHARED. With multiple tasks executing, there may be an instance where the same nonlocal variable
must be accessed. Pragma SHARED is the mechanism which designates that a variable is shared

16 CMU/SEI-87-TR-26

? -

by two or more tasks. It should be noted that Ada implementations are required to recognize '

language-def ined pragmas and may optionally define a set of implementation-speciific pragmas; how- -

ever, in either case, an implementation is allowed to ignore any pragma that it does not support. In ,.
other words, an implementation will not necessarily perform any action on these pragmas. An appli- .,

cation programmer must be aware of what pragmas an Ada implementation truly supports. .V,%

3.1.2. Time Control .J

Strict timing demands must be satisfied by a real-time system. The system is required to respond to
external stimuli and generate results within a strict, and sometimes fixed, deadline. Ada provides a ..-

delay statement to aid meeting time constraints on the execution of tasks (LRM, Section 9.6). The
delay statement suspends execution of a task containing the statement for a minimum specified-.,
duration. The language guarantees the lower bound for the length of the delay but imposes no 0
requirement on the upper bound. The time given in the delay statement is expressed in fractions ofW1
seconds and is a fixed point type defined in the predefined package CALENDAR. The delta of this
fixed point type, DURATION, is implementation dependent and is defined by the value of the attribute ,,'

SMALL. The language requires that DURATION'SMALL be less than 20 milliseconds and recom- ,

mends a value not greater than 50 microseconds. One type of select statement, timed entry call,

makes use of the delay statement. In a timed entry call, a client task will rendezvous if it can be ,;.

started within the delay time specified; otherwise, a set of statements in the delayed aternative will be ..,
performed. ..%

Ada off ers three pragmas for reducing execution time. Pragma INLINE requests that calls to a ..

-a,

specified subprogram be replaced inline by the body of that subprogram, thus eliminating the execu-.'.,
tion overhead associated with calling the subprogram, passing parameters, and returning from the

subprogram. Pragma SUPPRESS allows a compiler to omit certain runtime checks (e.g., .,,
Range check, Storagemcheck) in a program as a tradeoff between automatic runtime error detection ,

and execution efficiency. Pragma OPTIMIZE with the parameter TIME allows a compiler to choose
time over space as the primary optimization criterion. s o ',.

3.1.3. Input/Output
A common characteristic of embedded software systems is a strong dependence on real-time input ,
and output. Real-time input/output has unique properties in that it tends to occur at the hardware

device level, can be subject to stric timing requirements, and can be either synchronous or asynchro-

nous. Handling s/ for a specialized hardware device requires a special interface which has to

provide all the capabilities typically found in device drivers and interrupt handlers. For example, a
real-time application needs to enable, disable, and handle device interrupts; it may need to sendinfrct
control signals to and request status from a device; finally, probably will have to move data to and

Sfrom the data register(s) or I/ memory of a device. Independent of an embedded system's /trbe

device configuration (e.g., bus g /r , direct memory access, memory mapped D/L) and the nature of the

1/0 operations (i.e., synchronous or asynchronous), two techniques for handling real-time 1/0 opera- ,-'
tions are common: interrupt handling and polling. This of seees the features Ada provides ,

in support of these two approaches. Ie , tnf

Typically, low-level asynchronous / operations to and from hardware devices tend to be interrupt

driven. As such, a real-time application developer needs low-level 1/0 support and the ability to

CMU/SEI-87-TR-2617'

-.....,_..",-.-.-s pified .., . ",. subprogram- .. , be replaed inlin by th body -... of thatsbprogram thus,- eliminating the exeu--,-. -,,....,,

.',t, ._ - .-,",- and- -;" " execution efficiency. Pragma%, OPIMZEwih h paamte TIME allows--, , a , compile to choose• '.' ,.' ,,. ".. ..

handle hardware interrupts efficiently in software. Ada provides mechanisms to handle both of these

real-time I/O requirements. A low-level I/O package is provided in Ada's predefined language envi- r

ronment, namely LOWLEVELIO (LRM, Section 14.6). This package provides control primitives,

namely the SENDCONTROL and RECEIVECONTROL procedures, for I/O operations on a phys-

ical device; however, as one might expect, the details of their parameters (i.e., device kind and data

packet format) are implementation defined. For handling hardware interrupts in the application soft-

ware, Ada supports task interrupt entries by allowing bindings, via address clauses, between a task ".

entry and a hardware device that may cause an interrupt. Note that address clauses can also be

used to specify the address of data objects or the starting address of the machine code associated

with subprograms, tasks, or packages. In the case of interrupt entries, an interrupt acts as an entry

call made from a conceptual hardware task whose priority is higher than the main program and any

other user-defined task. I

In situations where an application's computing behavior relies heavily on incoming data, it is common

practice to poll the input device for the current data values. Particular polling techniques can be any ,%

combinac, cn of blocking or nonblocking and periodic or aperiodic. The distinction between blocking

and nonblocking I/O operations is tMat a blocking I/O request will be suspended until it is satisfied; _

however, for a nonblocking operation, control is returned to the caller without suspension if the re-

quest cannot be satisfied immediately (or within a specified time-out period). A blocking I/O operation

is analogous to a normal Ada task entry call, whereas a nonblocking I/O request coincides with a
timed or conditional entry call. Periodic and aperiodic polling techniques can be distinguished by their

respective temporal behavior: periodic polling has a deterministic behavior since the I/O requests

occur at regular time intervals (e.g., every 10 milliseconds), whereas aperiodic polling is nondeter- I
ministic. Any of these polling mechanisms can be implemented in Ada using the delay statement and
a general-purpose loop construct.

3.1.4. Internal Representation
As mentioned in Section 3.1.3, embedded software systems tend to need low-level interfaces to .

hardware devices; furthermore, because of the hardware-dependent nature of these systems, effi-

cient data representation in terms of the underlying machine's architecture is required. Typically,
these low-level interfaces consist of tightly packed data structures, dedicated memory locations, and

special-purpose registers. Unlike most other high-order languages, Ada provides representation

clauses [LRM, Section 13.11 which allow one to specify how the data types of an application are to be

mapped onto the underlying machine architecture. Representation clauses can take one of two

forms, either as a type representation clause or as an address clause. Since address clauses were

discussed in Section 3.1.3, this section will focus on type representation clauses.

Ada's type representation clauses fall into three categories: length clauses, enumeration represen-

tation clauses, and record representation clauses. 1

A length clause allows one to specify four different size requirements: the size, in bits, to be allocated .,

for an object of a particular type; the collection size in machine-dependent storage units (e.g., bytes,

LRM 13.7.1) for an access type; the amount of space, in storage units, to be allocated for activating a

task object of a particular task type; and the value of the actual delta for a fixed point type. For
instance, when an application needs strong control over dynamic storage allocation, the length clause

18 ~CMU/SEI.87-TR-26 "

18| A

:..

*'%,% 5.-, ~ q
5~.I5 .r ~ -, 5,S.o'

-dd

can be used to limit the total amount of storage available for the collection of objects of a given
access type. Allocation can be removed either automatically by an Ada implementation or explicitly
by the application using the predefined generic library subprogram UNCHECKEDDEALLOCATION. ,. ,

An enumeration representation clause specifies internal codes that are to be used to represent the
enumeration literals defined for any enumeration type. This is useful, for instance, when mapping
integer error codes onto enumeration literals. Z,2

A record representation clause specifies the storage layout of a record type, including the alignment,
order, storage place, storage unit positions within the storage place, and the size of the components.
The record representation clauses and length clauses allow for the specification of tightly packed data
structures for interfacing with the underlying hardware. Ada also defines an optional representation
pragma named PACK for influencing a compiler's mapping of entities (either arrays or records) onto
the underlying machine. Pragma PACK indicates to the compiler that minimizing storage is the main
criteria for selecting the underlying representation of objects of either an array or record type.

3.1.5. Error Handling
Real-time embedded software systems must be reliable, where reliability is typically measured in
terms of the system's availability, the mean time between failures, the mean time to repair, and the
frequency of failure [Allworth 81, Hood 861. The normal approach developers have taken in order to
meet reliability requirements is to design the real-time system in such a marner that it can recover
from its faults (i.e., they make it fault tolerant). To this end, real-time software must be able to both
detect and subsequently recover from errors. The Ada language provides a mechanism for dealing
with errors or other exceptional situations during program execution, namely the exception [LRM,
Chapter 11].

Ada exceptions come in two varieties: predefined and user-defined. The former are predefined in the
language (e.g., CONSTRAINTERROR, STORAGEERROR) and are automatically raised during

program execution when the exceptional situations with which they are associated are detected. The .,1 .
latter are defined by the real-time application designer for exceptional situations unique to the appli-
cation. In the case of user-defined exceptions, the burden is on the developer to supply code which
detects exceptional situations and raises the corresponding user-defined exception.

For designing fault-tolerant software systems, the use (declaring, detecting, raising, and handling) of
user-defined exceptions applies well. The real-time application designer/developer can plan for pos-
sible exceptional execution states by declaring corresponding user-defined exceptions. When abnor-
malities are detected by the software, the appropriate exception can then be raised and subsequently
handled by the error recovery (exception handling) code. This approach offers a viable alternative to
the more traditional technique of returning a status code from every subprogram invocation. It is
attractive from the real-time application developers point of view, since the tedious and time-
consuming checks for the value of the returned status code can be eliminated from the program's
source code and replaced by an automatically generated and optimized control structure.

CMU/SEI-87-TR-26 19 "0

'p

3.1.6. Numerical Computation
For the representation and implementation of physical quantities, Ada provides two classes of real

data types: fixed point and floating point [LRM, Subsection 3.5.61. Intuitively, fixed point means a
fixed number of places before the decimal point and a fixed number after; floating point means there

is a fixed number of significant digits and an exponent. Since real data types are only approxima-

tions, internal representation of objects will be inaccurate in either case. Floating point values have a
roughly constant relative error, whereas fixed point quantities have a constant maximum absolute

error. For both classes of real data types, Ada defines two machine-dependent attributes:

MACHINEROUNDS determines if rounding is performed for predefined arithmetic operations on
values of a specified type, and MACHINEOVERFLOWS specifies whether the exception
NUMERICERROR is raised in overflow situations. Specifically for floating point data types, Ada

defines several other attributes (i.e., MACHINERADIX, MACHINEMANTISSA) that provide charac-

teristics of the underlying machine representation. Finally, in real-time systems, computations of
mixed numeric types may be necessary. Since Ada is a strongly typed language, explicit type con-
versions are available between any two numeric types.

3.2. Issues and Questions

Program managers, despite a DoD directive, are faced with the decision of whether or not to use Ada.
Factors such as a steep learning curve, maturity of Ada compilers (i.e., runtime performance, imple-

mented options), and the availability of complete programming environments all influence this deci-

sion. From the real-time application developer's viewpoint, the decision to adopt Ada largely depends

on whether those Ada features discussed in Section 3.1 can be used. In this section, we discuss the

ramifications of using those Ada real-time features and, where appropriate, alternatives to their use .•,

along with resulting tradeoffs. This section also includes a high-level discussion of possible program- .

ming idioms involving the more broadly based language features (e.g., tasking, exceptions). 1!
3.2.1. Concurrent Control "
Section 3.1.1 introduced the Ada tasking mechanism, which provides the real-time application pro-
grammer with a facility to do multitasking. The decision to use Ada multitasking depends mainly on

the scheduling requirements of the application. In MacLaren [MacLaren 80], real-time applications

are classified by their inherent scheduling complexity as follows: -IL

" Level 1 consists of the purely cyclic (periodic) applications. The schedules are rigid and
invariant since no asynchronous events will occur.

" Level 2 applications are mostly cyclic with some asynchronous events and possible
variations in computing loads.

" Level 3 applications are event driven and contain little or no periodic processing.

Common practice has been to employ a cyclic executive for all three levels, but MacLaren shows that

Level 2 and 3 applications can be approached using Ada multitasking. The benefits of Ada multitask- '1
ing can be realized for applications at these levels. (Multitasking supports asynchronous events,
monitors intertask dependencies, controls task interaction, and supports cyclic processing at arbitrary

frequencies.) Level 1 applications are currently better approached by implementing a cyclic execu-

tive. With Ada multitasking, the runtime system is responsible for scheduling tasks. With a cyclic

20 CMU/SEI-87-TR-26

executive, the application programmer controls the scheduling. Cyclic executives can be written in
Ada, but at the cost of obscuring the underlying structure of the problem. The outstanding issue is
whether the constraints imposed on the scheduler by the language prevent a predictable, high- ,,

performance implementation capable of handling Level 1 applications. Further research and experi-
mentation is required to resolve this issue.

When Ada multitasking is used with a runtime system scheduler, the issue of portability must be
considered. Different implementations will undoubtedly use different scheduling algorithms, which will
most likely affect the order of task execution. The application programmer must be aware of this
ramification when employing different implementations.

For Ada tasks, the rendezvous facility is used for synchronization and communication (i.e., data
passing). During a rendezvous, the client task is suspended until the server task completes its accept
statement. To keep this suspension to a minimum, the accept statement (with associated body)
should be kept as simple and small as possible. This still may be too restricting, which would make
the application programmer consider the alternatives. Without rendezvous, tasks would execute to-
tally independent of each other. This implies that all common data would be shared (possibly with
pragma SHARED), causing the typical shared variable problems such as simultaneous updates, con- W

sistency, and correctness. Tradeoffs associated with these alternatives are the degree of program ,,.. -

complexity versus the degree of performance and runtime overhead (storage and execution time)
incurred by the rendezvous.

For the termination of tasks, the abort statement was discussed in Section 3.1.1. The results of an •
abort statement depend on several factors, including the state of the task to be aborted when the
abort statement is reached (if more than one task is named, the order of abortion is undefined). Also,
the semantics of the abort statement do not guarantee immediate completion of the named task(s).
Completion must happen no later than when the task reaches a synchronization point. The ramifica-
tions of abort make the statement an extreme measure for terminating a task. An alternative to this is
to use an entry in each task, which could signal completion and perform an orderly task completion
from within itself. This alternative may also be used instead of using terminate. The entry-per-task
alternative carries with it added program complexity and runtime overhead, but it may be a small price
for an orderly termination which could be more efficient and may result in better performance.

Combining Ada tasks to solve a specific real-time embedded problem can be a complex undertaking.
As stated in Borger [Borger 86], Ada tasks can be classified as actors, servers, or transducers based

on their functional behavior. Actortasks are active in nature and make use of other tasks to complete
their function, whereas server tasks have a passive nature as they react to external requests from
other tasks. Transducer tasks are similar in behavior to servers except that they are not totally
passive since they require resources provided by other tasks.

Ada tasking structures for common constructs used in the design of real-time applications can be
classified in one of the categories. For instance, a monitor is commonly used for controlling a sys-
tems resource. Such a task performs a 'watchdog" function and would be classified as an actor task-
In [SofTech 84], several approaches to implementing a monitor are discussed. A buffering technique
is commonly employed. A buffer typically acts as a link between some producer/consumer task pair

CMU/SEI-87-TR-26 21

16.

(both actors) and thus is a server task. Discussions on buffering implementations can be found in
(Barnes 84] and [SofTech 84]. Another interesting example of a server task is an agent task [Barnes

84]. Agent tasks perform some action on behalf of another task. Typically a user task will make a
request of an agent task. While the agent task is processing that request, the user task can perform
other functions until the request is processed. This scenario promotes greater parallelism. Agent
tasks are typically implemented with access types and thus are created dynamically.

3.2.2. Time Control -

One of the most important concerns for a real-time application programmer is satisfying strict timing

demands. The delay statement in Ada was designed to help satisfy those demands. Some applica-
tions have periodic timing demands, where it may be necessary to suspend a task for some predeter-
mined amount of time. The semantics of the delay statement are such that the task will be delayed
for at least the specified time. The programmer does not know the exact length of the delay. The
actual delay time is determined by the runtime system and depends on many factors, including the

degree of multiprocessing and the execution of higher priority tasks (see Chapter 4). Code inclusion
(i.e., dummy loop) and clock readings could be used in place of the delay, though some of the same
factors that effect the delay statement time will still influence the outcome. One obvious tradeoff
between these two approaches is usage of processor time. A task with a delay statement temporarily
releases the processor during the delay, thus enabling other tasks to execute. With dummy code,

processing time is essentially wasted. The tradeoff here is the use of scheduling, which, in the case
of the delay, accounts for the resulting uncertainty. Other tradeoffs are the simplicity of one state- %
ment and the degree of portability where specific implementation timing features may be used. One

has to look closely at an implementation timing facility as well as investigate the issue of clock
synchronization if the application is executing in a multiprocessor environment.

3.2.3. Input/Output
As mentioned in Section 3.1.3, embedded software systems often need low-level interfaces to
hardware devices. More specifically, an Ada embedded system must have potential access to O-

ports, to control, status, and data registers (for a memory mapped scheme), to direct memory access
(DMA) controllers, and to a mechanism for enabling and disabling device interrupts. The language-
defined LOWLEVELI/O package provides the SENDCONTROL and RECEIVECONTROL proce- .

dures for interfacing to a hardware device. These procedures have two parameters, the device type
and the format of data packets. Their specification is implementation defined since their kind and
format depend on the physical characteristics of a particular device. Although there are only two such
device control primitives declared in the language definition, they were provided for the purpose of
being overloaded for various device types and data formats in order to cater to the diverse physical
characteristics of many different devices. One can specify specialized device interface requirements
to an Ada implementor and have these interfaces implemented by a tailored LOWLEVEL_I/O pack-
age. The issue is whether the implementors provide what is needed for the programmer to have
complete control and to exploit hardware as if programming in assembly language.

If an implementation is deficient in this area, an alternative to using this LOWLEVEL_1/O package is
to write your own device-specific interfaces either in Ada, using representation pragmas and clauses,
or in another language provided that the interfaces can be linked with Ada code via the pragma

22 CMU/SEI-87-TR-26

iI

INTERFACE or code statements. The tradeoffs associated with these programming alternatives

include the generality of the LOWLEVEL_I/O primitives (i.e., "least common denominator effect"
since they were designed to cater to many devices) versus tailored interfaces designed exclusively
for a given device, and the application developers loss of control over the implementation of these
interfaces when they are provided by the Ada implementor via the LOWLEVELI/O package.

When a real-time application developer chooses to process low-level asynchronous I/O operations to
hardware devices using an interrupt-driven scheme, the software must be able to efficiently handle
hardware interrupts. As described in Section 3.1.3, Ada supports interrupt handling via task interrupt

entries. Issues relevant to the decision of whether to use this facility include:

" Performance: interrupt latency, runtime overhead, speed of interrupt scheme employed.
" Implementation restrictions on these interrupt entries: Can they be called from the appli-
.cation code? Can they have parameters?

" Implementation restrictions on the type of interrupt entry call: Is it a normal Ada entry
call, a timed entry call, or a conditional entry call?

" Scheduling behavior.

Alternatives to using Ada interrupt entries include:

* Coding the entire interrupt handler (e.g., subprogram) in Ada and associating its starting
memory location with the interrupt either through an address clause or by calling an
executive service routine (in the case of an underlying operating system).

* Performing the above interrupt linkage but implementing the declared Ada interrupt ser-
vice routine in another language (probably assembler) and using either pragma INTER-
FACE or code statements for the subprogram body.

* Relying on an existing device driver and interrupt service routine to handle device inter-
rupts.

* In situations when a real-time application developer chooses to process incoming data by polling the
input device, the language must provide support for any combination of blocking or nonblocking and

periodic or aperiodic polling schemes. As pointed out in Section 3.1.3, Ada can support these various
polling techniques since it provides both timing control and a general-purpose looping structure. Is-

sues relevant to the decision of whether to use Ada for polled I/O include its implementation of
blocking I/O (e.g., a pending I/O request should not keep other tasks from the processor) and the

accuracy of the timing control mechanism in support of periodic polling. In general, there is no better
alternative than the Ada loop construct for implementing a generic polling algorithm; however, one
may want to code (in assembly language) a more accurate timing mechanism than that offered by
Ada runtime systems. The tradeoffs of this technique include better timing accuracy and control
versus the cost, complexity, and maintainability of either having the runtime system provide a finer

timing granularity or accessing the real-time clock directly through low-level application code.

3.2.4. Internal Representation
Inherent in the need of embedded software systems to interface to hardware devices is a requirement

for efficient data representation in terms of the underlying machine's architecture. As pointed out in
Section 3.1.4, Ada provides representation clauses which allow one to specify how the data types of
an application are to be mapped onto the underlying machine architecture. Issues relevant to the

CMU/SEI-87-TR-26 23

decision of whether to use these clauses include whether or not they are supported; the degree to,10

which they are implemented; the effect of their implementation; the supported granularity of control -

(e.g., bit level, byte level); and an application's need to control the maximum dynamic storage size,
the internal representation of data objects, the internal codes used for enumeration literals, and the ,

optimal use of storage. Alternatives to using the representation clauses include accepting the
compiler's default layouts and mappings, or going outside of Ada and coding space-critical sub- ,

programs in assembly language. The tradeoffs between these choices include degraded execution

efficiency and the loss of strict control over storage size, data layout, and storage optimizations for
Ada code without representation clause versus increased complexity and decreased maintainability of
the non-Ada code.

3.2.5. Error Handling
As noted in Section 3.1.5, the Ada language provides predefined exceptions and the potential for
user-defined exceptions for dealing with errors or other exceptional situations during program execu-
tion. By default, during program execution an Ada runtime system automatically detects the excep- _.

tional situations with which the predefined exceptions are associated; when such a situation is de-
tected, the runtime system raises the corresponding predefined exception. These runtime checks
can be suppressed via the pragma SUPPRESS if it is supported. Issues relevant to the decision of V
whether to suppress these runtime checks include the execution overhead of performing them, the
associated code size overhead, and the additional application code needed to provide the same level
of error detection it they are turned off. The alternative to performing thes runtime checks is sup-
pressing them and either completely ignoring the possibility of runtime errors or providing additional ,,

application code to replace the suppressed checks. The latter is probably unrealistic since the devel-
oper has already chosen to suppress the runtime checks to obtain greater execution speed. The
tradeoffs one must consider when deciding to suppress the runtime checks include whether or not the .

detection mechanism can be disabled (exceptions may be automatically detected by hardware and
signaled via error trap interrupts), execution speed and code size optimization, loss of runtime error

detection, loss of code safety, and the amount of additional application code needed to replace a
subset of the suppressed checking.

The issues regarding whether to use user-defined exceptions are identical to those for the predefined
exceptions; however, more programming alternatives exist. For instance, a real-time application de-
veloper can instrument the code with both pre- and post-subprogram call checks for examining the

validity of the program's execution state and, thus, for detecting faults. Another alternative is to pass
error return code parameters between both subprogram and entry calls and check their values after
call return. The new tradeoffs associated with these choices include the amount of additional appli-
cation code to perform pre- and post-call tests, the execution overhead associated with these checks
versus the Ada runtime overhead for exceptions, the execution time overhead associated with pass-
ing extra parameters, and the complexity of non-exception implementations.

If an application developer chooses to use exceptions as the means of error handling, various pro-
gramming idioms should be considered Exceptions can be handled locally or moved to any unit in
the dynamic calling chain They can be handled by name or anonymously ("when OTHERS") De-

pending on the programming style, exceptions may have to be declared in package specifications to

export their name and to allow proper propagation. Another programming decision to consider is

24 CMU/SEI-87-TR-26

whether to provide the corresponding error handling code inline or remotely in a special, centralized
error processing package. The method of use for predefined exceptions is a stylistic concern; how-
ever, it affects the testing and debugging process when application code depends on predefined
exceptions. See the Texas Instruments report [TIAIM 85] for a further discussion of these issues.

3.2.6. Numerical Computation
The application programmer has the option in Ada to define data types that closely represent true
physical quantities. Fixed and floating point types can be defined with constraints corresponding to
actual limitations of the data. Constraint checking and data consistency can then be handled auto-
matically by the compiler. (Pragma SUPPRESS can be used to eliminate constraint checking.) Be-
cause of strong typing, predefined operations are restricted to manipulating data of the same type.
To get around this, explicit conversion may be used; but the benefits of automatic compiler checks-0
may be lost. Another alternative is to use only predefined types instead of tailored user-defined types
for each physical quantity. Using this approach, the benefits of strong typing are lost; practice reverts
to FORTRAN-like code. Finally, operators (e.g. I,*, +) can be defined to accept data of a specified type * ..

(overloading [LRM, Section 6.7]).

3.3. Summary
The purposes of this chapter were to identify the features of the Ada language which specifically
address computing problems characteristic of real-time embedded systems and to raise relevant ,0,

issues, pose fundamental questions, and discuss possible programming paradigms relative to using
these features. Ada's real-time features as identified in this chapter include the following:

" tasking: the predefined LOW_LEVEL_I/O package
" pragmas: PRIORITY, SHARED, INLINE, SUPPRESS, INTERFACE
" representation clauses: length, record, enumeration

" address clauses li

" exceptions
* numeric data types
" the generic UNCHECKEDCONVERSION function
" the generic procedure UNCHECKEDDEALLOCATION

Below we present a list of issues, questions, programming alternatives, and programming idioms
relevant to the use or non-use of each of these language features. Note that a programming idiom is
a coding paradigm in which a feature can be used, whereas a programming alternative is an option to
use when a particular language feature is not used.

Tasking

" What is the scheduling strategy employed? Is there more than one scheduling algorithm
implemented? If so, can it be selected via a pragma?

9 What selection algorithm is used to choose between many open accept statements?
* What causes rescheduling? 0

interrupts "

CMU/SEI-87-TR-26 25

,

2_1

- expired delays
I/0

-rendezvous

" How long is a task context switch?

" Do I/O operations from tasks suspend the rest of the program?

" How is runtime storage handled for tasks? heap? stack?

" What are performance metrics for common tasking operations?
" activation
-rendezvous

" termination
" abort

* How do the following affect program performance? [Pierce 86]
" number of activated tasks
" number of ready tasks
" number of select alternatives in an selective wait

* number of rendezvous parameters

' parameter size
" nested accepts

* What are the implemented semantics of the abort statement? '

" What are the implemented semantics of delay statement?
" What is the value of DURATION'SMALL?
" What is the value SYSTEM.TICK?
" Programming idioms

" static versus dynamic task objects
' minimal code in accept bodies

' terminating versus nonterminating tasks '

' actor/server task pairs -,

' use of agent task pools

" Programming alternatives
" cyclic executive
' global data areas and semaphore primitives or a monitor task

' global data areas and pragma SHARED
' abort statement versus "kill process" kernel service -.

LOWLEVELI/O Package
5.

" Are interfaces to any standard devices provided (e.g., analog/digital converter)?
" Will the Ada implementor tailor this package to the application's devices characteristics?

" Are there any restrictions on the type and format of the primitive's parameters?
• Do the primitives provide an adequate interface to the system's devices?
" Can I/O ports and memory mapped I/O be handled in a straightforward manner?

26 CMU/SEI-87-TR-26
.I

" • ' ,' ",, -il,"' ='- ' ,,'. "e ". " % " ' . " "- • % '%. ", "- % • % % = " % . ,-. " ". -. ",, ".,. .. . - • ,,, • ,, . i *.• ,9• 'S.

• Programming altematives
- Write your own device-specific interfaces in Ada using representation pragmas

and clauses.
- Write your own device-specific interfaces in another language provided that they
can be linked with Ada code via the pragma INTERFACE or code statements.

Pragmas (PRIORITY, SHARED, INLINE, SUPPRESS, INTERFACE)

" Which of the above pragmas are supported?
" How many task priority levels are supported?
" How are shared variables implemented?

" What is the effect of INLINE on execution performance?
" What is the effect of SUPPRESS on execution performance and code size? •

" What languages can be interfaced with Ada?

Address Clauses
" Are address clauses supported in general?

" Are interrupt entries supported? 4,

* Performance of interrupt entry calls
" interrupt latency %.%

" runtime overhead associated with calling interrupt entry , 1.

" use of a fast interrupt scheme

* Implementation restrictions on interrupt entries
" Can they be called from the application code? *,

" Can they have parameters?

" Implementation technique for an interrupt entry call
" fast entry call •

" normal Ada entry call

" timed entry call
" conditional entry call

" How do interrupt entry calls effect scheduling behavior?
" Programming alternatives

" Code entire interrupt handler (e.g., subprogram, task) in Ada and specify its start-
ing memory location via an address clause.

" Rely on an existing device driver and interrupt service routine to handle device ''
interrupts.

" Implement the interrupt handling code in another language and link it with Ada
code via the pragma INTERFACE.

04
* 2ICMU/SEI-87-TR-26 2

, "i - 1i " -t " " t "- ". "l" t _ % . %." . % % % " ". %' • ='. '% '% % " '% % % • % % '.

Representation Clauses (length, record, enumeration)

" Which of the above representation clauses are supported?
" Are there any restrictions on the use of the supported representation clauses?

* What is the supported granularity of control (e.g., bit level, byte level)?
" Does the Ada compiler use a space-efficient storage allocation strategy?
* What are the compiler's default values for the size, in bits, for the predefined types? -.

" Programming alternatives
" Accept the compiler's default layouts and mappings.
• Code space-critical subprograms in assembly language.

Exceptions

" Can exceptions be suppressed?
" What is the runtime overhead associated with managing exceptions?
" What is the code size overhead associated with using exceptions?
" Programming idioms

• Handle exceptions locally without propagation. .

• Propagate back to and handle by the frame that is at the head of the call chain.
• Handle by some intermediate frame.
• Propagate anonymously back through the frames on the call chain and eventually

trap by such frame via a "when OTHERS" clause.
" Provide the corresponding error handling code in-line or remotely in a special

(centralized) error processing package.
" Restricted use of predefined exceptions.

* Programming alternatives
- Instrument code with both pre- and post-subprogram call checks for examining the

validity of the program's execution state.

- Pass error return code parameters between both subprogram and entry calls and
check their values after call return.

Numeric Data Types

" What are the the compiler's intrinsic integer representations?
" What is the value of MIN_INT, MAXINT?
" What is the value of MAXDIGITS?
" What is the value of MAXMANTISSA?
" What is the value of FINEDELTA?
" What are the values of MACHINEROUNDS, MACHINEOVERFLOWS,

MACHINERADIX, MACHINE_MANTISSA, MACHINEEMAX, and MACHINEEMIN?
* Programming alternatives (to relax strong typing and inherent constraint checking)

• Use pragma SUPPRESS.
" Use predefined types and avoid introducing new numerical (sub)types.
• Overload common operators (+, -, e,/)

28 CMU/SEI-87-TR-26

I_,e'. "# "'" a''e"t d.'_'.'..-.. , ' . '.',,- ,. ' .% . -.*' --. . .-_- ,. n.'r '.,r .' .t. - -- -' ,- '-*' '-,e .'t -

Generic UNCHECKEDCONVERSION Function
* Are there any restrictions on the source and target types?

Code Statements

* Which languages are supported?
* What restrictions apply to code statements?

For the most part, the programming alternatives for particular language features involve either using
other features of Ada to produce the desired effect (e.g., busy wait loop versus the delay statement) -

or interfacing to a non-Ada solution. The subsections of Section 3.2 each, in turn, discuss specific
tradeoffs associated with these alternatives; however, in all cases, there are common tradeoffs asso-
ciated with choosing the appropriate implementation. A major consideration is the runtime system -

implementation and its performance, i.e., the execution and code size overheads associated with a 0

feature. When using a non-Ada solution, other considerations include the adaptability, complexity, _
maintainability, readability, and portability of Ada versus non-Ada application code.

NP

/'i2

"p =

.;%,,"

V ==

'= p.,

, 5--%

='5.,

CMU/EI-8 -TR-6 29,-V

".V
- , ,'. % p,= -. '#. .-. % % , .' ,% '. "°.'" % °o .'.%'.. -'.% = °- -. -,*.o . .- = . • -,- •°,. o=-.. -. ° ,.= • -,- - '5 %"- " ; ' i ' • : = d : - - - I

'
"

•
"" ""'"

' - - • * ° " ' ° '% % °
* "% %

%
' "

' ' ' = '
*"'%'' "

% "
°'=

% ° "' * "%
M" % .% " %" 55 -V

'S

.5'.

:5'.

.'.

S

-

'5

p

I...
p
'5,5

S

p
.1*

'S

4.

'S

-~ r.5*54~

.5"

.5'.

5'

4.~S

"'S

'S.

4%

.4.

445'.

J
1-

*

*54*4%

*55

"'S

-"4

*55,

* 4,

'S
'S
'S

'S4.
-j

CMU/SEI-87-TR-26
30 5-

.5,.

~.**~"S -. -.

-~ -- S ~
S.-'. .

SW %S 5' %.%%7.%'S.7s ~ 'S'S~..* -. '. .'... . V V'S'S
5'. '. *'S -S 5' 5'. 5' -' -. 5' * 5' 5' 5' 5. 5' -. 5' 5'.

'. .

A .e

4. Ada Runtime Implementation Issues
-I

This chapter describes issues concerning the implementation of Ada runtime systems that will affect
embedded systems software. We present, in an informal manner, the Ada runtime semantics as
defined by the Reference Manual for the Ada Programming Language [LRM 831, and we highlight the ..

implementation-defined options that are available to the Ada compiler implementor. These are of
considerable importance to an embedded systems designer as well as to any Ada compiler buyer in
general. The runtime system that the compiler designer builds is one of the most important parts of
an Ada programming environment. Much of the discussion in this chapter relates to the compiler
designer and the choices available for developing the Ada runtime system implementation. We as-
sume that the reader is familiar with the Ada language as given in the LRM.

The purpose of this chapter is to emphasize to embedded systems builders that the LRM permits Ada S
compiler implementors to develop quite different compilers for use in embedded systems. Further, it
suggests the need for compiler buyers to be involved with the compiler designer's decisions about
implementing many of the runtime features; and it discusses some of the overheads at execution time
due to the Ada runtime system implementation (ART)-information an embedded systems designer
needs to know. S

V".'
A runtime system is the combination of software and hardware which supports language features and
the execution of application programs. It consists of all the support mechanisms needed in the
execution environment for a program and includes the instruction set, executive, processor,
microcode, and runtime library. This chapter discusses the compiler-related aspects of the runtime
system implementation. Ada has language concepts that require a complex runtime system to sup-
port them. For example, Figure 4-1 presents a picture of the contents of an Ada runtime system.

For an embedded system, it is most likely that the runtime system will be implemented on a bare
machine-that is, one without significant operating system support, or one with a minimal kernel. The
Ada programming environment must provide the real-time support facilities. An Ada compiler will
translate the Ada program into target-machine code that includes procedure calls to the runtime
routines that will support the execution semantics of Ada. Note that the distinction between the -

predefined runtime support library and the conventions of a compiler and its data structures is not
always obvious [ARTEWG 86b]. This makes it difficult to separate the discussion between compile-
time issues and runtime issues. -

Compared to a language such as Pascal, Ada's high-level features reduce the amount of support that
the programmer must provide but increase the support that the compiler and its runtime library must
provide. Ada has thus eliminated fundamental design choices that were traditionally made by real-
time system designers.

This chapter is divided into the following areas:
" memory management -'.*-
" multitask management
" time management 0
" subprogram management

CMU/SEI-87-TR-26 31
0

-I

'J 1

* input/output, arithmetic, and exception management
" pragmas
" implementation-dependent features found in LRM Chapter 13

The intent of this organization is to focus the discussion on a particular runtime function, such as
memory management; this is in contrast to the organization of the LRM, which concentrates on

language constructs. Each section discusses the implementation issues and options available to the
compiler designer that affect execution characteristics.

runtime code and data

tasking manager

storage manager

exception manager

library packages:
I/o, system, calendar ...

system call handlers

interrupt handlers ,-

J

Figure 4-1: Aspects of an Ada runtime environment 4,

4.1. Memory Management
An executing Ada program and its runtime library require storage for code and data. A runtime
memory manager is needed to control the dynamic allocation and deallocation of data space for
objects requested by the programmer, such as tasks, records, arrays, access collections, and proce-
dures. It is also manages data required by the Ada runtime system implementation, such as attri-
butes, task context control blocks, and spare storage units.

Memory management is quite complex because of the nature of the data types. The storage manipu- ,
lation presents considerable execution overhead in terms of the amount of work to allocate/deallocate
space, check status, and respond to exceptional and error-based situations.

'-

Ada is a scoped language like Pascal but has more data types of greater complexity. It has local,
shared, and dynamic data structures such as pointers, objects created by allocators, dynamic

32 CMU/SEI-87-TR-26

----W

Vx. , I

(unconstrained) arrays and records, and tasks. All designated objects pertaining to an access type
are dynamic in that they need to be created and initialized at execution time. Runtime stacks for
tasks are manipulated along with a dynamic pool of data for access types and for unused memory,4,or %,r

space.

Since embedded systems have limited memory resources, they require discretionary use of storage
Controlled use of Ada concepts, along with certain implementation strategies, can help an embedded
system reduce overheads. Ideally, to reduce runtime overheads, all memory requirements must be
known at compile/link time; but Ada has dynamic types. Experience has recognized difficulties with
Ada's memory management [Bamberger 86, Hood 86, Laird 86, Ruane 85, Sonicraft 86].

The rest of this section is divided into four parts:
" storage allocation" storage deallocation

* working storage limits
• storage layout

4.1.1. Storage Allocation
Implementation of memory allocation, apart from typical Pascal-like storage management such as
stack allocation, involves:

* finding a chunk of memory of a suitable size for use as a task's runtime stack, or for an ,
access collection, or for ART data such as a task's control block (TBC)

" managing the space within an access collection for access structures
" extending the access collection chunk if requested
" monitoring overflow of storage usage
* minimizing wasted space (if requested by the programme via pragmas)
" maintaining spare storage chunks S

Figure 4-2 represents a conceptual view of a memory space during an Ada program's execution. The
task control block that serves as the runtime data descriptor for a task's executing context can contain
task context information for suspended tasks such as register contents, as well as pointers to the
task's runtime stack and associated components such as dependent tasks. Each task is likely to have
a runtime stack that serves as the working memory for the execution environment of that task. The
stack may contain information such as local variables and procedure-related data (e.g., static links).

Any storage allocation will involve seeking a free storage chunk of an appropriate size and then
updating and initializing any runtime data structures to indicate the allocation. If there is no space
available, the Ada runtime system implementation must raise STORAGEERROR or expand the -
memory space available. Storage allocation is affected by the following Ada features:

"creation and initialization of tasks
" entry of a new scope
dynamic structure invocation via allocators
" task communication and synchronization
" pragma PACK and representation specifications

CMU/SEI-87-TR-26 33

%,

Itask I

.,,II "'°"

clt Itak %

F user codetw

Figure 4-2: A conceptual view of an Ada program's runtime memory

Entry into a scope (for example, commencement of the main program, task creation, dynamic array

allocation, or allocator evaluation) requires allocation of storage space along with data initialization.

For example, an allocator involves dynamic storage allocation overheads since space must be found

for the access structure and its access value must be delivered. Such storage must be free of the

normal block-structure scope implementation mechanisms since the lifetime and size of the data may

be unknown. This is commonly known as heap storage. One example of allocation complexity con-

cerns variables defined within a package that are not visible outside the package. These are similar

to Algol 60 "own" variables-that is, they do not change value between calls issued from outside the

package to subprograms declared within the visible part. Such variables are created when the pack-

age is elaborated (within a program unit's declarative part or at library initialization) and are destroyed

when the package goes out of scope. The ART must ensure this lifetime. Initialization can represent

a considerable runtime overhead, particularly if it involves complex operations such as function calls,

package elaborations, and task activation, which themselves involve significant storage allocation

(and, possibly, deallocation). Library units need to be elaborated before the main program's code can

begin executing.

Task interactions present overheads in terms of memory allocation. Each task requires some sor of

task control block, by which the ARTs tasking manager can monitor its status and coordinate context

switching. A task also needs workspace for a runtime stack. Tasks can be created and destroyed ,

dynamically, which requires the ART to allocate task space and TCBs as needed. Tasks commu--'

nicate and synchronize via a rendezvous which involves:

:'I.

34 CMU/SEI-87-TR-26 i,

Iz 04 .1 . P -.free

%-

-p

Passing rendezvous parameters (generally based upon the method chosen by the corn-
piler designer). The parameter passing may involve both the tasks' stacks or the alloca-
tion of a separate area for passing large structures. Returned rendezvous parameters
may involve the copying of data from one task's data area to the other's. Entry call
parameters have the same options as do subprogram parameters, as described in Sec-
tion 4.4.

* Performing the appropriate constraint checking.

" Determining the availability of space.

" Maintaining any parameter's lifetime. (For example, a function may have a return
parameter which is a task that is local to the function. The task is out of scope once the
return from the function occurs, but status information must be returned for that task
since queries can be made by the caller to that task.)

Pragma PACK [LRM 13.1(11)], if implemented by the compiler, requires the compiler to pack records
and aFrays. The compiler designer specifies the semantics of this pragma (such as alignment), but
there is no requirement to implement any better packing strategy than the one the ART could provide
regardless of this pragma.

Miscellaneous aspects that need better definition by the compiler designer and could incur runtime

overheads, include:

* Elaboration order of components within the library: tasks, arrays, and other dynamic data
will require storage; differing elaboration order can affect the sequence of initializations
and possibly the memory requirements; this elaboration needs to be carried out before
the main program begins.

* Allocation strategy for access types: algorithms such as best-fit or first-fit strategy for
finding collection space from the spare memory have different runtime performance.

* Extension of memory: memory may need to be expanded; for example, unconstrained
arrays/records with discriminants could require more memory than that allocated by de-
fault.

* Storage attributes SIZE, STORAGESIZE and the effect of pragma MEMORYSIZE:
the value returned from the attribute operation may or may not include the size of the
runtime descriptor for each type; similarly, the designer determines whether the value for
task STORAGE SIZE includes the space for dependent tasks. 4,

" Access types: the designer should determine whether any storage overheads can be
eliminated if no access types are used [Grover 83].

" Library-level package: the designer should consider whether tasks in library-level
packages can be statically allocated [ARTEWG 86d] rather than dynamically allocated.

" Overlap: a component may be allowed to overlap a storage boundary within record
representation clauses [ARTEWG 86d].

* Record components with no component clause: an implementation places a record com-
ponent which has no component clause in a record representation clause [ARTEWG
86d].

* Strategies for memory use: embedded systems use various strategies for making effi-
cient use of memory; overlaying and selective linking may need to be implemented.

* Memory optimizations: swapping, partitioning, segmentation, and virtual memory may
need to be considered for the embedded target system [Grover 85a, Lomuto 831. A
compiler buyer will need some set of guidelines and tests to determine differences in
memory usage when applying these concepts [Ruane 85].

(CMU/SEI-87-TR-26 35

4.1.2. Storage Deallocation
Deallocation means that memory once named Rnd used can become spare memory, to be used
again for allocation. When deallocating dynamic storage, the ART must update its runtime descriptors
of available space and add this freed space to the spare memory. Ordinary Pascal-like stack deallo-
cation occurs for concepts such as procedure exit. More complex deallocation is discussed below in
relation to:

" garbage collection
" pragma CONTROLLED

" UNCHECKEDDEALLOCATION procedure
" exception propagation

The compiler designer determines whether to implement garbage collection, which will reorganize the
spare memory space, making more space available and allocation operations more efficient. Various
strategies for garbage collection [Lomuto 83, Grover 85a] are dependent upon the allocation algo-
rithm chosen, such as automatic or on demand. The semantics of Ada imply that a compiler can
leave garbage collection to the latest possible time, if it is done at all, which may not suit embedded
systems. A compiler buyer will need tests to determine when collection should actually be done. -

Tradeoffs must be recognized by the programmer when using garbage collection.

The compiler designer needs to consider the garbage collection strategy, including: ,

" How garbage collection is performed, for example, via reference counts.
" When it is performed, for example, upon scope exit or on the fly.
" How fragmentation of spare memory is handled, for example, coalescing is done period-

ically.

Noncontiguous memory could create problems w h garbage collection [Sonicraft 86). A generic
storage manager [Bamberger 861 for supporting efficient deallocation of different data types may be
worthwhile.

Pragma CONTROLLED [LRM Annex B], if implemented, requires the ART to delay any automatic
storage reclamation for designated objects until the scope of the access type declaration (which could
be the end of program) is left. This pragma could significantly affect the garbage collection algorithm
which the ART uses. Pragma CONTROLLED may not necessarily provide any benefits regarding
when storage is deallocated.

If the compiler designer chooses to implement the generic procedure UNCHECKED DEALLOCA-
TION [LRM 13.10.1], the ART must deallocate the allocated object without regard for any "dangling
pointers," that is, without checking whether all objects have finished referencing the allocated object.
In effect, the programmer now has the responsibility for ensuring that it is safe to reclaim storage. The
LRM does not define the consequences of subsequently accessing the deallocated object via alias-
ing, so the ART is free to implement this deallocation in any way. The compiler designer defines
completely the semantics of the UNCHECKEDDEALLOCATION procedure.

36 CMU/SEI-87-TR-26

'i

,%-..

.A

,.%,,

Depending on the exception-handling mechanism that the compiler designer chooses, exceptions '
may involve deallocation of stack space during exception propagation. For instance, searching for an -

exception handler may involve allocation of data space and forced deallocation of stack space during
exception propagation by, for instance, "unwinding" the stack in order to propagate out of scopes. .% ,.%

When an exception propagates to outer scopes, the system requires termination actions for each
inner scope, which will involve deallocating any local space for tasks, access collections, arrays, and
any other dynamic structures. This subject is discussed further in Section 4.7.

4.1.3. Working Storage Limits
Working storage is the memory space available to the executing program for its lifetime. The LRM
allows the compiler designer to choose the amount of allocated memory for data as long as the
minimum size, if requested by the programmer, is allocated. Hence, it may be obvious to the pro-
grammer if space allocated could be larger. In an embedded system, actual memory space used is a

significant issue to the programmer. Features concerning the amount of memory allocated in Ada
include the following:

" representation specifications
" length clauses
" pragma MEMORYSIZE

" exceptions

Representation attributes such as POSITION, SIZE, and ADDRESS [LRM 13.7.2] can be interrogated
in order to gain information about storage characteristics. In some cases, the compiler designer

chooses the interpretation of the value to be returned. For instance, X'SIZE gives the number of bits
used to hold object X. If X is a task object, it is not clear what value is returned-it could include the .
number of bits making up the task control block, or just the pointer to the TCB. Similarly, the meaning
of representation attributes for querying addresses and storage limits is defined by the compiler
designer.

Ada's length clauses [LRM 13: SIZE, STORAGE_SIZE, SMALL], if implemented, require the compiler
to set limits on the amount of storage associated with a type (e.g., integer, access collection, or task).
The sizes allocated must be at least the minimum requested by the programmer but can vary beyond

that. If the programmer does not specify a size in the program, the compiler chooses a default size.
The compiler designer chooses whether the size associated with the length clauses includes the
space needed for the runtime descriptor associated with the type. The designer also determines
whether task storage allocation has fixed limits, what types of storage are fixed, and the default
values for the amount allocated.

Pragma MEMORYSIZE [LRM Annex B] requires the compiler to set the bound for working storage A
size for the program. The compiler designer decides whether that value includes the space for
dynamic structures such as dynamically allocated objects. Pragma MEMORYSIZE requests only a
minimum working storage space. The compiler could actually allocate a larger space. A programmer
may need to know the default size of blocks allocated for units.

Overflow of memory space must be monitored by the ART when length clauses are used. In this

CMU/SEI-87-TR-26 37

"J.
e~ ~- ~. i.

case, the STORAGEERROR exception should be raised or memory should be automatically ex-

tended. Monitoring overflow is generally an expensive operation because the checking routine must

be called frequently. For example, it could occur every time some space is required on the runtime

stack. Any solution will provide overhead at compile time, procedure prologue/epilogue time, or any

time storage space is required on the runtime stack, for example, for a temporary variable. A pro-
grammer will want to know if there is a mechanism for determining the availability of working storage

[Grover 85a, Lomuto 83]. IL

Following are some other issues which the compiler designer must resolve in order to assist the

embedded systems programmer:

e information about the absolute addressing limitations on memory [Grover 85a]

o tests for measuring maximum/minimum allocations for tasks, subprograms, packages,
and access types [Ruane 851

• memory saturation

Questions that must be asked include:

* How many levels of nesting of procedures are possible and how much dynamic memory
is available to individual tasks?

* What diagnostics are available?

* Can memory tests be performed?
" Can thrashing be detected?

" What are the difficulties in detecting overwrites [Grover 85a, Lomuto 831?
" How much storage is used by the ART and its data?

4.1.4. Storage Layout
The Ada semantics imply a rather complex runtime organization of storage space. Code and data

space is required for every task. The sharing of data by tasks (discussed in Section 4.2.4) requires

that data be accessible by all the appropriate tasks. Structuring the compiler's runtime system code

itself could affect some optimizations since only the ART must access the TCBs, whereas user tasks

need not, Also, dynamic nesting of program units adds another level of indirection to accessing data,
which can adC -untime overhead. This can have important ramifications for microprocessors that
have unusual segmented memory techniques.

Structure is important to embedded systems since memory is a scarce resource and needs to be

used efficiently, by placing data structures in readily accessible places, Some targets have specific

code and data areas (for example, read-only memory), and virtual memory may be limited. Em-

bedded hardware systems usually have novel requirements for code versus data spaces. The run-

time system requires a special area for its own data structures to which user data will not need

access.

The following features affect the layout of runtime storage:

" pragma PACK -

* representation specifications for enumerations and alignment -

" address clauses

38 CMU/SEI-87-TR-26

: ,'... .. " " "."."":.,:"-':.'":.".-'":. : : :-. : L :.: :-' - :: >".:.: " ... •'.,".-," ,,.'..

",

, "

Pragma PACK [LRM 13.1], if implemented, requires the compiler to implement an allocation algorithm

for arrays and records which will attempt to minimize storage fragmentation within the structure. This
may place an overhead on top of the normal runtime component access mechanism. This pragma
has been previously discussed in Section 4.1.1.

For enumeration type representation clauses [LRM 13.3], the compiler must generate the
programmer-defined codes for enumeration types instead of its own. This is likely to affect the nature

of optimized code and hence execution time since some sort of mapping table may need to be .
accessed-the compiler maps the representation clause for record component layout into a form that
the programmer requested, which may not be that which the compiler would naturally choose. This
may affect efficiency of component access since the normal access algorithm must be overridden.

Address clauses [LRM 13.5], if implemented, require the ART to force an object, such as a variable or 0
constant, to reside at a particular address. The ART must ensure that a subprogram, package, or
task unit starts its object code at that address. The ART may override its default allocation strategy to
impose this restriction. Specific pragmas can be defined by the compiler designer which affect %

storage structure at runtime. In particular, the Ada designers recognize that overlaying of memory is a
desirable feature but they leave it to the compiler designer to specify and implement in any way (as
long as it is not implemented by overloading address clauses).

Some miscellaneous issues that the compiler designer needs to resolve:
* Whether the initialization routine can become overlayed by working storage.

o The definition of new pragmas.

* The support of partitioning, swapping, overlaying, segmentation, virtual memory [Ruane
85].

e The procedures for orderly shutdown of the whole system and how they affect the con- -

tents of memory.
a Consideration of reconfiguration of memory for fault tolerance.

4.2. Multitask Management

Ada provides concepts for concurrent execution of sequential pieces of code. An ART may imple-
ment these concepts on a single machine or a multiprocessor system. It must monitor, create, delete, 46

switch, suspend, resume tasks, query the status of tasks, schedule, and allow tasks to communicate
in an orderly fashion. Ada's tasking facilities may not meet some of the performance requirements of

an embedded system where time criticality is top priority, unless some customizing and optimizing are
carried out or certain programming paradigms are used. This section is divided into subsections
discussing the concurrency model, scheduling, communication, shared memory, and multiprocessors.

4.2.1. Concurrency Model
Ada provides tasks that can be dynamically created, activated, destroyed, and run concurrently. Ada

semantics imply considerable runtime overhead. The complexity of implementing the tasking model
is described below through the followin2 features: 0

CMU/SEI-87-TR-26 39

* task relationships and elaboration

" status information
* task abortion, completion, and termination

* exceptions

There is a strong relationship between tasks that the ART must recognize and maintain. This rela-
tionship affects the amount of parallelism and the order of task termination. A task spawning another
task is the parent of that task; the parent task is delayed while the child task is activated. Any prob-
lems in activation are relayed back to the parent, who assumes responsibility for taking corrective
action. LRM 9.4 sets up a master-slave relationship. A master (that is, a unit whose execution
creates the task object) cannot terminate or abort until the slave task (and its siblings, at least) have
done so. Slave tasks can be collectively terminated, that is, a group of related tasks are forcibly
terminated under a complex set of conditions involving their state and that of the master, the master's
siblings and the group's own siblings, and the inability to rendezvous.

The ART must keep track of the relationships and status of tasks, along with saving the machine's
context when switching between task executions. For each task, some sort of runtime tasking data
descriptor, a task control block will contain all necessary status information. Tasks can complete
normally, be aborted, or terminate collectively it no rendezvous is available. This must all occur in the
appropriate order based on the task dependency hierarchy, which the ART maintains and adds to
when tasks are created [Reino 86]. The master-slave, parent-child relationship of tasks gives rise to
complexity in the ART and affects the efficiency of elaboration/terminatioriabortion of tasks. Task
termination based on the dependency hierarchy is very costly and complex to implement because of
data structures and accessing. Efficient algorithms for task termination are needed [Reino 86].

Tasks provide a considerable overhead in the runtime system because the status must be maintained
for context switching, task dependencies, task abortion and termination, and task communication and
synchronization. The depth of the nested task hierarchy will influence the amount of runtime over-
head. Compilers that remove tasks by optimization are needed. Tasks can be reduced to a se-
quence of procedure calls [Pepper 86]. An ART without the tasking code will obviously reduce run-
time code size and save context switch time. Context switch time becomes a very important measure
for a system with a large number of tasks. Other important measures for users include: maximum
number of tasks allowed in the execution environment at any one time; maximum length of
entry/delay queues [Ruane 851; and time consumed for task elaboration and for activating and ter-
minating a task [Clapp 86].

Although not explicitly stated in the LRM, a main program can be considered a task by the ART. This
is obvious since a main program has a priority and can perform actions which only tasks can, such as
delaying itself and making an entry call. Hence, the main program task may require a parent and
master so that it fits into the task dependency hierarchy. The ART must have its own elaboration
phase whereby the initial runtime data structures and library packages are elaborated. The compiler
designer must decide when and how library tasks are terminated. The requirement by the LRM is
that the library tasks do not terminate at least until the main program has completed, and these tasks
need never terminate. The LRM does not define what happens to tasks declared in library packages ,,

when the main program terminates [ARTEWG 86d]. Further guidance, though, from the Language

40 CMU/SEI-87-TR-26
S

Maintenance Panel indicates that the user's program--not the compiler designer-determines

whether termination of the tasks occurs.

The ART must provide operations whereby the program can query the status of tasks. This is accom-

plished through task and entry attributes [LRM 9.9]: T'CALLABLE, T'TERMINATED, and E'COUNT.

The information will most likely be kept in the TCBs. Queries must be implemented as indivisible

operations.

A task can abort another task within scope (including itself) at any stage. Synchronization points for a

task's execution status are defined as in LRM 9.10.6. Synchronization points occur at:

" abort statements
* the end of a task's own activation

* a task's activation of another task

" an entry call
" the start or end of an accept statement, a select statement, a delay statement, an excep-

tion handler

Exception handlers require the ART to check the status of tasks for abnormality and exceptions

before allowing the task to execute past the synchronization point. Abnormality checks (that is,

language-required runtime checks for the abnormal status of a task) impose considerable overhead

for tasking since they need to be carried out at every synchronization point. The ART must instigate

task abortion or exception propagation before the next synchronization point is reached if conditions
are ripe for doing so. For task abortion, the ART must ensure that tasks terminate based upon the

task dependency hierarchy. This hierarchy entails considerable runtime overhead, especially for task

abortion. Embedded systems generally need to delete tasks so that the resources such as space can

be reused. Minimizing tasks can save context switches and scheduling time. Task abortion does not
involve an instantaneous, sledge-hammer kill, but rather a graceful, orderly shutdown of processes

based on task dependencies. A special form of "instantaneous kill" may need to be supported by the

implementation. The compiler designer determines whether a task can be aborted (and go to

completion) while updating a variable [ARTEWG 86d]. It also determines the semantics of an abort

[LRM 9.10] statement with multiple tasks that can indicate any ordering for the task abortion. Pro-
gramming style-or rather, structuring of source code-can considerably affect the runtime character-

istics of tasks. For example, tasks terminate via a terminate alternative depending on who the master

is; if the master is a library package, then tasks need not terminate.

The ART must guarantee that exceptions do not propagate outside of the scope of tasks except in the -.-

case of a rendezvous (for an unhandled exception) and when a child task has an error during its

elaboration.

A user would like to know the maximum number of active tasks and main programs; length of entry .

and delay queues; the maximum number of entries per task and level of nesting of tasks; and the

number of parameters that can be passed during rendezvous [Ruane 851.

CMU/SEI-87-TR-26 41

% %-
_2Z

[4

4.2.2. Task Scheduling
Some of the complex runtime issues related to task scheduling are:e priority

* scheduling strategy ,:%

* suspension and resumption

As long as tasks with higher priority run ahead of those with lower priority when it is sensible to do so,
Ada permits any scheduling strategy [LRM 9.8]. The language defines lower as "a lower degree of
urgency" [LRM 9.8]. The programmer gives a priority to a task (or the main program) via pragma
PRIORITY [LRM Appendix BJ, or the compiler gives a default priority. Priorities may not be imple-
mented at all, but the ART must have scheduling rules for all tasks. The compiler designer deter- I
mines the priority of a rendezvous without explicit priorities [ARTEWG 86d]. Priorities are static in the
sense of "once set, always set"-except during a rendezvous, where the ART must change that of

the task with lower priority to temporarily assume that of the higher. Priority can only affect task
scheduling; it cannot affect tasks in queues, for example, awaiting rendezvous. There are known
problems with Ada's priority scheme, such as the priority inversion problem [Cornhill 87], which a
compiler for embedded systems may have to circumvent. For instance, since a task is suspended
until the completion of subtask activation, it is possible that a low-priority activation could result in a h,
very long suspension of a high-priority task. This is definitely a problem for embedded systems
designers who must circumvent these semantics of Ada.

The compiler designer determines pragma PRIORITY, the values of the attributes FIRST and LAST
of the subtype PRIORITY, and the default priority level values. The designer also decides the effect
of priorities on queuing for rendezvous and real memory, task start-up/elaboration, exception raising,
task termination, and I/O access. Ada's priority-based scheduling strategy provides an
implementation-dependent option for resolving fairness and starvation in scheduling; for example,
round-robining or FIFO resumption of delayed tasks of equal priority. A cooperative or preemptive
scheduling model can be implemented. Priorities are static in Ada, but an embedded system is likely
to want to dynamically change priorities based on certain events for reconfiguration, fault tolerance,

etc. The library system may need to include some mechanism for customizing priorities [ARTEWG
86c]. The priority range must be sufficient to suit the programmers' needs.

A cooperative (that is, run until blocked) or a preemptive (that is, run until interrupted) scheduling
strategy can be implemented. Foreground tasks (tasks with higher priority requiring frequent
execution) and background tasks (lower priority tasks which only need to execute when the processor
has any spare cycles) are a normal, embedded system executive strategy [Hood 86]. Round-robin

and time-slicing scheduling may need to be supported [ARTEWG 86c]. Ada does not permit the
primitive control over the runtime system that allows a cyclic executive to be efficiently implemented

[Grover 83). Coding a cyclic executive in Ada does not solve any new problems and is not as L
efficient in solving many of the problems traditionally addressed by cyclic executives. A data-driven
executive may not suit embedded systems [Grover 85a]. The compiler designer determines whether
user-defined schedulers are implemented and whether it is necessary to write the scheduler in as-
sembly code for sake of efficiency.

I

The LRM does not require deadlock detection, but it is possible that a compiler can detect any 71

42 CMU/SEI-87-TR-26 -"]

obvious deadlock situations such as a task calling its own entry. An embedded system cannot afford
to "hang," so it is likely that the ART will implement extra features for detection and invocation of -.

recovery/restart (hot or cold). The compiler designer determines whether to implement any capabil-

ities for detecting and recovering from deadlock [Ruane 85] and for detecting infinite loops.

As part of the scheduling model, the ART must suspend and resume a task's execution for an amount

of time. The delay statement [LRM 9.6] and timed entry call [LRM 9.7.3] require suspension of tasks.
The ART will most likely have several queues of tasks: one for tasks that are executable and one for

tasks that are delayed. Using some sort of timer mechanism, the ART suspends the task. The ART is .
only required to delay the task for at least the minimum requested time. The compiler designer can

choose when, beyond the minimum amount of time, and whether to resume the task, if at all. Such
an implementation may not be accurate enough for an embedded system where events must occur at -, -:

a certain time or within a time period.

The following measures are likely to be important for embedded system designers:

" the range of context switching time
1 overhead time for task creation, termination, and abortion L

" the duration in which all interrupts may be inhibited

" the precision of delays and timed entry calls

A compiler designer may develop library packages for programmer code which may require non- "- -

preemptible sections [ARTEWG 86c]. Task identification requires customized features [ARTEWG

86c].

4.2.3. Task Synchronization and Communication
Implementing communication tasks is complex because of the following features:

" different kinds of rendezvous
" exceptions

" interrupts

To implement a rendezvous, the ART must ensure that tasks are synchronized. This means the ART

must be able to suspend a client task until the server task is ready to communicate. A rendezvous
involves a client task that makes an entry call to the server task, which will at some stage make a

corresponding accept (if it has not done so already) to start the rendezvous. The ART will place the
client task in the FIFO entry queue of the server task for that particular entry. It must suspend the
client task (if necessary) to await a corresponding accept and during the rendezvous itself. At the end .

of the rendezvous, the ART must resume the client task after checking for unhandled exceptions and\ ,"

abortion. Conditional rendezvous add complexity to implementing a rendezvous:

* For a server task, the compiler designer defines a strategy for determining which select
alternatives within a selective wait [LRM 9.7.11 are candidates for execution. The ART
chooses the best alternatives in accordance with LRM semantics. If a rendezvous is
possible, the ART initiates it. Otherwise if there is a delay alternative, the ART suspends
this server task and prepares for a timeout on that task. Otherwise, if there is a terminate
alternative, then ART changes the status of runtime descriptors indicating that this task
can potentially terminate. Then, using a complex policy based upon the task depend-

CMU/SEI-87-TR-26 43

%
Jp

' p

ency hierarchy regarding master-slave relationships, it determines whether to initiate the
task's termination. There may be a limit to the number of entries per task. If not, min-
imizing the entries per task may help reduce access times (depending on how the ART
implements entries and relates them to tasks).
For a client task, a conditional entry call [LRM 9.7.2] requires the ART to disallow a
potential rendezvous if the server task is not ready at the time of the entry call to commu-
nicate; the alternate actions of the call must be initiated by the ART.
For a client task, a timed entry call [LRM 9.7.31 requires the ART to suspend the client
task for a minimum amount of time and initiate some sort of timing mechanism which will
cause a rendezvous to occur if the server task is ready to synchronize/communicate F"

within a specific period of time; otherwise, it resumes the client task.

A compiler designer determines such issues as: the order of evaluation for guard conditions in a
selective wait; when the delay alternative (if present) is evaluated; when the family indices (if present)
are evaluated; for selective wait alternatives, the algorithm to determine the selection from the open
alternatives in a selective wait; and, for delay alternatives, the algorithm to determine selection trom
delay alternatives of the same delay [ARTEWG 86d].

Fairness and determinism in selecting rendezvous and interrupts are options the compiler designer
must choose. Designers can choose special optimization techniques which could include the follow-
ing:

* Within a standard library package, generic synchronization primitives for coding efficient
generic real-time concepts such as semaphores and buffers.I Compiler optimizations for minimizing context switches during rendezvous such as
Habermann-Nassi, monitor clusters, Rajeev and Greene [Hood 86].

" Transforming tasks into procedures to avoid cyclic scheduling [Pepper 86].
* Fast interrupts--that is, rendezvous which are treated like procedure calls and executed

on the caller's runtime stack can eliminate tasking overheads and reduce interrupt re-
sponse time. This may require all runtime tasks to be visible to the entire system, which
may not be possible due to memory limitations [ARTEWG 86c, Lomuto 83, Pepper
86, Hood 86]. Asynchronous or synchronous or mixed task synchronization facilities may
be needed [Lomuto 82]. Techniques for implementing synchronous and asynchronous
events exist [Grover 85b, ARTEWG 86c].

At the start of a rendezvous, the ART must raise the TASKINGERROR exception within the client
task if the server task has already terminated or been aborted. Also, if there is an unhandled excep-
tion at the completion of the rendezvous, the ART must raise it at the client task site as well as raising
it within the server task and initiating all the necessary exception handling and propagation actions.

Interrupts [LRM 13.5.1] are treated as entry calls by a hardware "task" whose priority is higher than
that of the main program and any user-defined task. This interrupt can be any kind of entry call
(timed, conditional, or normal). Implementing a hardware interrupt involves mapping a hardware sig-
nal into a high-priority, Ada entry call. This hardware signal must look like an ordinary software entry
call to the ART. The compiler designer defines any semantics for this kind of entry call, such as
parameters, storage area, and exception raising. The interrupt must be given highest priority, locking
out other activities. The LRM does not define whether interrupts are treated as conditional entries
and therefore lost if not serviced immediately. An implementation may define additional conditions for
terminating the task that contains the entry. The hardware could directly execute the accept state-

44 CMU/SEI-87-TR-26

.0 .0

% Z

ment. The interrupt entry call needs to have only the minimum semantics given in LRM 13.5.1 (rather ',.

than that of a task in rendezvous). An interrupt need not invoke any scheduling actions I
Enabling/disabling interrupts must be customized, and the priorities of nested interrupts must be
resolved [ARTEWG 86c]. The compiler designer defines any further semantics as to where the ren-
dezvous is executed, e.g., on a stack. The designer also determines the restrictions on terminate
altemative-further requirements that are imposed by an implementation for selecting the terminate
alternative that may appear in the same select statement with an accept alternative for an interrupt
entry [ARTEWG 86d].

Measures that embedded systems designers would be interested in include:

" minimum rendezvous time [Clapp 86]
" the maximum time duration in which all interrupts may be inhibited (Ruane 85] 0
" timing accuracy for the delay statement and for timed entry calls
* interrupt response time [Clapp 86]

For many real-time applications, a 12 millisecond time for synchronizing during a rendezvous is too
long. A basic context switching time of 20 microseconds is reasonable [Laird 86].

4.2.4. Shared Memory
Tasks that share data, indicated by pragma SHARED [LRM 9.11], seem to require the ART to imple-
ment mutual exclusion with the guarantee that reading or updating this data will be treated as critical.
The compiler designer defines the status of the data if its defining task is aborted [LRM 9.10(8)]. The
shared data will cause an overhead due to the mutual exclusion operations required on the data.
Local copies of the data are possible. Designers need to define the implementation mechanism for
maintaining the local copy and resolving any update anomalies as well as defining whether shared
variables are protected by rendezvous and whether multiple reads are allowed simultaneously.
Pragma SHARED can be applied only to scalar and access objects [LRM 9.11 (10)].

In general, tasks can share data as a result of common scope. The ART is not required to implement

this data within a critical region, so the programmer must take responsibility for guaranteeing safety of
data access.

Generic units suggest a sharing of code. There is no requirement on the compiler as to how it imple- B
ments generic units. It can choose to share code for each instantiation, which can help minimize
memory usage, or it can generate a copy of the unit's code with actual parameters. This could
reduce some execution time for accessing data but quite likely would add to the amount of memory
used.

4.2.5. Multiprocessors ,.

The LRM provides no explicit facilities to address implementation on mutiprocessors. But the intent isDetec M uting cs uso rass aco s m c ie: R moe p o e u e cl ordsrb td rn

that the semantics of the runtime system do not prohibit such an implementation. It is likely that theART will need mechanisms [Ardo 83] that the compiler designer must choose for doing the following:

•Detecting status of tasks across machines: Remote procedure call for distributed ren-

dezvous will probably be needed for a rendezvous. A communication protocol in effect
needs to be implemented. [Ardo 83]

CMU/SEI-87-TR-26 45

___.-. ..-...-_

e Scheduling tasks across machines: How is distributed task scheduling carried out? How
are task termination dependencies (abortion/collective termination) enforced for distri- -

buted processors? What is the algorithm that determines the execution order of the
activation of tasks on different processors? [ARTEWG 86d] How sensitive is preemptive
scheduling to distribution of tasks over processors? [ARTEWG 86d] When is allocation of
tasks to processors performed at compile/link or runtime? Can the programmer control
the allocation [Lomuto 83]? Can a task allocate, rendezvous with, or abort a task resid-
ing on a different processor? [Lomuto 83]

e Coordinating data access: What technique is used for shared data, for example, a com-
mon memory or local copies? Is there a common pool or local pool of dynamic storage
for access types?

* Distributed rendezvous: For a rendezvous among separate processors, how are objects
transmitted, and what are the time delays due to rendezvous between different proces-
sors? For parameter passing, which will need a protocol, what are the storage ramifica-
tions and the method? With two tasks in a multiprocessor system rendezvous, how are
task priorities among processors resolved? On which processor is the rendezvous per-
formed? [ARTEWG 86d] What are typical time delays for rendezvous between tasks on
different processors? [Ruane 85]

* Global timing facilities: What are the clock synchronization problems among different
processors? Will there be local or global clocks?

e Code sharing for objects of the same task type: Can the code of a task body be shared
among multiple occurrences of the same task type?

e Miscellaneous: Can generics be instantiated for remote processors? Can program units
be distributed to remote processors? How can auditing tasks and data be performed?
What are the ramifications for exception propagation out of remote tasks?

4.3. Time Management

Time management relates to the following features: -

e package CALENDAR and system timer

* type duration
e delay precision

The ART must implement the package CALENDAR [LRM 9.6], which provides the implementation-
dependent definitions of time and date types (e.g., TIME, YEARNUMBER, MONTH_NUMBER,
DAYNUMBER, DAYDURATION) along with their operations (such as Clock, Year, Month, L)ay,
Seconds, etc.) and TIMEERROR exception. Implementing these operations involves the mapping
of the target system's timer into the ART. Some ranges of timing types are language defined. The
accuracy of the timing functions will depend upon the precision of the embedded system's clock and
the precision of fixed point arithmetic. A timing range of up to one day (in seconds) is required.
Durations must be implemented with, at most, a maximum value for DURAT!ON'SMALL of 20 mil-
liseconds and a recommended value of 50 microseconds. SYSTEM.TICK must be given a value to
represent the basic clock period.

Upon a delay statement [LRM 9.6] or a timed entry call [LRM 9.7.3], the ART is only required to

guarantee the suspension of the task for the minimum of the time specified. On average, a delay is
likely to be longer than specified because of the time it takes the ART to recognize the expiration of a

46 CMU/SEI-87-TR-26
,I

V ' d.,.d~'
5

5 p's''- V.~ VV ~~ ~ ~\A. .~ ~ /; r-?

delay, reschedule, and resume the task. This is often acceptable, but (for example) in a cyclic
program intended to execute at a prescribed frequency, every repetition comes a little late; there is a
cumulative drift in the time of execution, as well as jitter in the actual intervals. Techniques for
eliminating the drift may be needed [Downes 82). Ada does not permit delaying up to a certain point
in time, either for a task or the main program.

Issues which the compiler designer must resolve include: What is the CLOCK accuracy regarding
DURATION'FIRST, 'LAST, and 'DELTA? What are the values of FINEDELTA and TICK? Does

package CALENDAR support Julian days? What is the accuracy of the timer? Does the embedded

system have more than one timer? If so, does the ART make use of each or just one? What is the .'
frequency with which all time-dependent conditions are checked (for example, expiration of delays,
next time-slice)? Should there be facilities for time zones, different calendars, universal time, within
package SYSTEM? What is the representation of types DURATION, DURATION'SMALL, and 0
SYSTtEM.TICK? Is there a known upper bound on a delay? A delay may be required that is less than

that incurred by the execution-time overhead of the ART's implementation of the delay. Is the delay
expiration a scheduling event? What is the overhead of a call to, and return from, function CLOCK?
[Clapp 86]. Are there any facilities for providing an accurate measure of elapsed time between

events? Can a programmer use a "pool" of timers as software "watchdogs"? [Lomuto 83]. ARTEWG S
[ARTEWG 86c] suggests possible solutions that could provide for commonality among Ada compil- ' "

ers.

4.4. Subprogram Management
Procedures and functions are subprograms [LRM Chapter 6]. These imply a stack-based implemen-

tation mechanism. Parameter modes in, in out, or out, demand that read-only and update capability
be provided by the compiler. The compiler designer must decide upon the mechanism for passing
parameters given that scalar types (integers, reals, and enumerations) and access types have to be
passed by copy. Other parameters can be passed by copy or by reference as determined by the
compiler designer. Association between formal and actual parameters (which can be evaluated in
any order), along with returned parameters, must be chosen by the compiler designer The compiler
designer may decide to give the user some control over the parameter choice of passing mechanism
[ARTEWG 86d].

Mechanisms for returning results, especially record and unconstrained array types, can affect space
requirements and efficiency. The option may depend upon memory structure and access times For
any copying, this will need to be done within a critical region. Parameter size can affect passing
strategy. For example, is it necessary to pass a large parameter by copy? Some miscellaneous
issues which the compiler designer must resolve include: Where is the space for parameters al-

located? What is the effect of using global data for parameters? What is the order in which they are
passed? In addition, depending on the size and timing requirements, tradeoffs for the method of ,"

parameter passing need to be determined An evaluation order policy for association between formal
and actual parameters and returning results is determined by the compiler designer,

Pragma INLINE [LRM 6.3.2], if implemented, generally requires the compiler to expand inline the

CMU/SEI-87-TR-26 47 A%

=• •

L

subprogram body. The programmer can expect improved execution performance with this although
there can be a space penalty for multiple copies. Pragma INTERFACE [LRM Annex B], if imple-
mented, requires the compiler to interface Ada subprograms with non-Ada code. This has serious
ramifications on the execution environment since the calling conventions of the non-Ada language are ,
likely to be different from that of Ada. Hence, the compiler designer must define any limitations or
restrictions on the code that can be interfaced. For example, the ART must be able to handle
non-Ada code that may pass parameters by a method not available in Ada itself.

Because of fault-tolerance requirements, an embedded system needs to detect overflow of storage
space, particularly the runtime stack. Subprogram call (and any other scope entry) can result in
overflow of the stack space available. The ART can choose whether it will provide additional features
for checking overflow on procedure/function invocation. Techniques involve adding extra checks to -

prologue code or to each push onto the runtime stack, or having a special marker to indicate end of
stack. This can present considerable overhead. Calling depth can be effected by the amount of
recursion and nesting level.

Embedded systems measurements would include: time to pass parameters; subprogram call and
return overhead; time for intra- and inter-package subprogram calls; time for instantiation of generic
code [Clapp 86]; overheads of constraint checks on subprogram call and return; limits such as max-
imum number of subprograms, level of nesting, number of parameters; and number of formals in a
generic subprogram [Ruane 85]. Compilers may include optimizing facilities such as tail recursion for
recursive subprograms to eliminate any subprogram calls, which reduces the necessity to save sys-
tem status (registers). Each generic instantiation is allowed to have a different ordering of its generic
actual parameters, which may affect any expressions with side effects [ARTEWG 86d].

4.5. Input/Output Management

Input/output is very implementation dependent. The four kinds of input/output for Ada, as defined by
the LRM Chapter 14, must be implemented as library packages by the compiler. The compiler needs
to map the language-defined I/O operations to those of the underlying target system's file support
utilities, if any. External file facilities must provide for binary and ASCII information. Some operations
and default parameter values (for example, DEFAULTBASE) are specified by the language to aid
formatting and constraints. For sequential I/O and direct I/O [LRM 14.2; binary, sequential, and - I
random external file accessing] and text I/O [LRM 14.3; ASCII, human-readable input/output to de- 45

vices such as a terminal or printer], Ada specifies operations and exceptions. For low-level I/O used -

to control physical devices, the compiler designer must define the syntax and semantics of this form's
operations, exceptions, and device access protocol along with implementing the SENDCONTROL ,

and RECEIVECONTROL primitives for interfacing to the devices.

The low-level I/O is likely to be the main form of I/O used by embedded systems. This may require
files for maintaining persistent data such as recording statistics, so it will also require direct or se- "

quential I/O. Similarly, there may be a need for terminal I/O for monitoring purposes, in which case
text I/O will be used

The ART must enable the communication between the LOWLEVELIO package and the actual
4M"5

48 CMU/SEI-87-TR-26.,

r

-5----°- *o • - - - ., °- - o .o ° o . •. *- -J *- -* - .

device. These needs will extend to the high-level and text-level portions of Ada I/O if all I/O requests
are channeled through the LOWLEVEL 1O package. Alternatively, rather than using the low-level -s

package as an intermediary, the high-level and text-level packages may interface to the device
drivers directly by employing such Ada facilities as address specifications and machine code inser- .

tions. Anytime I/O is to be performed, the ART will probably be involved in the operation since access ,"

to the physical resources may be protected and privileged only to the ART. Utilization of the resource
may require the ART to suspend the execution of other tasks. [NAVSEA 83].

I/O_EXCEPTIONS is a package which the compiler must implement. It defines all the exceptions that -. '

can result from any input/output operations. The ART must map any file accessing errors, device
problems, or parameter anoma!ies into Ada exceptions. The runtime stack must be in a state which
the ART's exception manager can use to raise exceptions. ?--

Issues and questions which the compiler designer must resolve:

The language does not define what happens to external files after the completion of the
main program. For example, what if a file is not closed by the end of a program? It is up
to the implementation to decide the ramifications of input/output for access types-what
does it mean to read/write a pointer value? There are no language limitations concern-
ing the number of files that a programmer may associate with any given external file, nor
how many file modes may be associated with an external file.

" Effects of scheduling, synchronization, and communication of tasks with I/O operations
are left to the compiler designer.

" Size of files, existence of temporary files, external file associations, effect of reading
uninterpretable elements, terminators, buffering, and representation of nongraphic A-
characters are decided by the compiler designer [ARTEWG 86d].

" Input/output for enumeration types [LRM 14.3.91 could be used for integers although that ,..,

is not intended. The language does not define the consequences of such usage.
" Limits are a concern. How large can a file/data value be? What are the maximum

lines/page, characters/line, pages/file? The maximum/minimum size for disk I/O? Max-
imum length of various I/O queues? Maximum number of 1/0 devices and buffer sizes? •

" What restrictions apply to types that can be instantiated for I/O? Is binary I/O supported?
Is asynchronous I/O supported for character and block-oriented devices? Is formatted I/O
supported? Is real-time target system data collection by host computer supported? Are
time-outs detected for I/O requests? Can one external file be referenced by more than
one program unit concurrently? Can separate tasks write to the same screen without -

interfering? Can a task perform an asynchronous I/O operation [Ruane 85]? .

" What are the effects of disconnecting peripherals? Must Oevice drivers be written in Ada?
What happens to files when the main program has ended? What capabilities exist for
maintaining file security? What is the minimum disk access time?

" Ada defines no locking or safety measures for simultaneous access to files.

4.6. Arithmetic

Universal types [LRM Chapter 3] are a canonical form for representing all the possible arithmetic
values. The arithmetic of embedded targets is bound by the precision of the hardware. Compilers are
expected to do exact arithmetic at compile time on static universal expressions [LRM 4.10.4] such as S

numeric literals. The requirement for the accuracy of operations with real operands at runtime is

CMU/SEI-87-TR-26 49
p ". '

0% &
-- ,p%.

defined in LRM 4.5.7. However, in practice, an implementation will probably provide all the accuracy

that the underlying hardware allows. The runtime cost for arithmetic expression evaluation includes
computation and constraint checking. Arithmetic is very implementation and machine dependent.

An integer type [LRM 3.5.4] has a set of values within a specified range. Real types [LRM 3.5.6]

provide approximations to real numbers. Floating point types have relative bounds on errors,
whereas fixed point types have absolute bounds on errors. Error bounds on the predefined operations

are given in terms of the model numbers. Fixed point types have an error bound specified as an

;. absolute value, known as the delta of the type.

SHORTINTEGER, SHORTFLOAT, and LONGINTEGER/FLOAT are types which, if implemented,
are designated by the compiler designer to represent shorter and longer ranges, respectively, than
INTEGER and FLOAT. The ART must implement the attribute operations such as SMALL and
LARGE, and their representations must be defined by the compiler designer. Apart from the basic
operations such as addition, the ART must implement attributes in LRM Sections 3.5.5, 3.5.8, and
3.5.10, such as T'WIDTH, T'MANTISSA, and T'DELTA. A compiler designer may provide new attri-

butes. A compiler purchaser must make sure that the attributes are suitable for that machine. Valida-

tion cannot check such features.

The ART must raise an exception (numeric error or constraint error) for any arithmetic operation that

cannot deliver a valid result, unless it is part of a larger expression that will subsequently deliver a

valid result. Rules for determining a valid result are defined by the LRM. Universal expressions [LRM
4.101 must have an accuracy as good as that of the most accurate predefined floating point type
supported by the implementation. The LRM implies that some error conditions, such as when the

4. result of a real operation has a model interval that is undefined [ARTEWG 86d], may go undetected.

Ada makes use of model numbers and safe numbers [LRM 3.5.6] to describe the accuracy of real
numbers. Safe numbers are an implementation-defined set providing guaranteed error bounds for

operations on an implementation-dependent range of numbers. An implementation must include at
least the model numbers and represent them exactly. Implicit conversions, and some explicit conver-
sions, can result in an implementation-defined value. For example, the compiler designer chooses
how real numbers, such as 0.5, are rounded to integers (i.e., up or down).

The accuracy and range of data types must be completely defined by the compiler designer. Differ-

ent accuracies (depending upon the various data types) can be used. An embedded system designer
will need a good understanding of how accurate the arithmetic can be.

The LRM recognizes that various targets may not be able to detect overflow situations. The attribute
MACHINE OVERFLOWS indicates whether the target will raise the exception. The LRM does not J

define the actions when the result of a real operation (where MACHINE_OVERFLOWS is false) is not

in the range of safe numbers [ARTEWG 86d]. ""
5,

. J

€ ,p.

I50 CMU/SEI-87-TR-26
.4=

v*'% " o" ' .P ".°-#,'' . = ' -'"." o ". .°. -P = -, -J -,t " . " . -. -" "- -= ." " ." ", "" - . ". ' . - "4 - ."

°P%

4.7. Exception Management

An exception is an error or an exceptional situation which occurs during program execution, It can
result from a range or domain error for an operation. The handler is a piece of code which is

executed when the exception occurs. It represents a transfer of control from the normal flow of control
within the program. An embedded system needs to cater to exceptional situations and recover from ,
them or be fault tolerant enough operate at a certain level of reliability in the face of faults.

The ART is required to detect the exception and search for a handler. The compiler designer
chooses the following: the implementation strategy for handlers; how to propagate exceptions;
whether to report an exception or lack of a handler beyond the scope of the main program; what
strategy to use for setting the status of the program if no handler is found; how to implement nested
exception handlers; and how to handle an exception during elaboration of the runtime system itself
(for example, during library elaboration).

The ART must cater to direct and indirect exceptions. Not only must the ART instigate an exception

indirectly caused by an operation such as overflow, but also a direct one requested by the program-
mer via the raise statement. The ART must allow exceptions to be propagated implicitly (i.e., to an
outer scope if no handler exists within the immediate scope) or explicitly (i.e., via a reraise with the
raise statement within a handler). Rules exist concerning the range of an exception's propagation.
For instance, during a rendezvous, an exception in the server task will propagate to the client task if it ,,,,

is unhandled during the rendezvous or if the served task aborts, but not vice versa. The ART maps P A

any hardware faults (related to operations) to the Ada software exception-raising mechanism. It also
prepares the status of the task's stack to conform to that which the exception manager can use.

Language-defined exceptions [LRM 11.1] that the ART must implement are:
CONSTRAINTERROR, NUMERIC_ERROR, PROGRAM_ERROR, STORAGEERROR,
TASKINGERROR, and the "catch-all" exception choice, OTHERS. This last one applies to •
anonymous exceptions-that is, all other possible exceptions for which no handler exists in the cur-
rent scope.

Ada semantics for exception handling require the ART to implement guarded regions as defined by
LRM 11.4. These are the scope of a handler within the Ada program. The ART must detect that an
exception has occurred, find the handler, and change the execution context from the normal flow of
code to that of the handler. If no handler exists for that region, it must propagate the exception to the
outer region in order to continue its search for a handler; before that current region/scope can be left,
tidy-up actions must be performed, such as deallocating storage and waiting for tasks to terminate.
(The propagation can be suspended due to preemptive scheduling; hence, mutual exclusion ..
safeguards should be enforced.) Once a handler is found, its code can be executed and the task can
continue at a point from within the handler.

The LRM requires no particular implementation strategy such as exception map or a stack unwind
mechanism [Baker 86]. Each has its own overheads. Some performance issues are related to the
overhead if a code sequence has an exception handler associated with it yet has no exceptions .

raised during execution of that code [ARTEWG 86d]. Other performance issues related to the over-

CMU/SEI-87-TR-26 51 •

- +- -+ +. + I I ' d I' + 1" " +' I ."] t l(.i . ,l ,]+!l ,l lt~lt'' 1,iii' " i'I, Ii, l t,-%0.

head associated with the raise statement and finding the handler. There is no requirement for an
ART implementation to notify the programmer when an unhandled exception has propagated to its Jt

limit, for example, when a task completes or the main program's execution is abandoned. Nor is the
status of the program defined by language semantics when the latter happens. The representation of
unique identifiers for exceptions can have an impact on the speed and size of the generated
code [ARTEWG 86d]. The raising of NUMERICERROR, supported as hardware, could be more
efficient than the compiler generating code after every arithmetic operation [ARTEWG 86d]. The
designer can implement additional exceptions.

One of the major runtime overheads for Ada concepts is the constraint checking which the ART is
required to perform. The LRM 11.6 suggests that certain compiler optimizations can be performed,
thus eliminating some exception raising situations, particularly constraint checks. p

Pragma SUPPRESS should cause the compiler to omit the corresponding exception checking that
would occur at runtime. The LRM does not define what happens when a execution error occurs and
the check has been eliminated. The ART could ignore this pragma, though, and raise the exception
anyway. Using pragma SUPPRESS involves a considerable risk factor for a programmer, buteliminating the checks can significantly reduce object code size and improve execution time.

4.8. Pragmas

There are 14 language-defined pragmas [LRM Annex B]:

* CONTROLLED
• ELABORATE
o INLINE
* INTERFACE

" LIST pf

" MEMORYSIZE

" OPTIMIZE p.

* PACK p
oPAGE

o PRIORITY

* SHARED

STORAGEUNIT

• SUPPRESS
oSYSTEMNAME

k %
Their main purpose is to select particular runtime features of the language or to override the %
compiler's default. The compiler designer can choose whether the compiler implements any of the
pragmas and whether it gives a warning to the programmer that it has ignored the pragma The
designer can also define new pragmas.

S

Pragmas ELABORATE, LIST, SYSTEM NAME, and PAGE have their primary effect before runtime
Pragma OPTIMIZE requires the compiler to make time versus space efficiencies This implies that the

5.,tf.',

52 CMU/SEI-87-TR-26)%

ART provides the capabilities to offer different algorithms based on runtime costs. Criteria need to be

defined by the ART as to how such tradeoffs can be determined and implemented. Pragmas CON-
TROLLED, MEMORYSIZE, and PACK relate to storage management and are discussed in Sections ,

4.1.2, 4.1.3, and 4.1.1, respectively. Pragma STORAGEUNIT is a compile-time feature which re-

places the value given in package SYSTEM for representing the size of a storage unit. Pragma
INLINE and INTERFACE relate to subprogram management and are discussed in Section 4.4. Note
that the LRM does not define the circumstances under which subprograms are expanded. For in-

stance, the implementation may place restrictions on inline expansion of a subprogram body com-

piled in another compilation unit [ARTEWG 86d]. Pragma SUPPRESS relates to exception handling

and is discussed in Section 4.7. Pragmas PRIORITY and SHARED are discussed in Sections 4.2.2

and 4.2.4.

The semantics of the 14 language-defined pragmas are broad enough for any implementation to 0

choose its own approach. More pragmas can be defined by the compiler designer (for example, a
pragma to invoke overlays) as long as they are documented. As with all pragmas, a compiler may

ignore the programmer's request without notifying the programmer.

4.9. Chapter 13 Features

Chapter 13 of the LRM contains specific implementation-dependent issues which were designed into

the Ada language, such as storage mappings, association of entities with hardware, implementation-
defined package SYSTEM, attributes, machine code insertions, interface to other languages, and

facilities for removing checks. A compiler need not provide any of these except for package SYSTEM.

If it does, the compiler designer must define the semantics of these features.

4.9.1. Clauses
Length clauses [LRM 13.2] and record representation clauses [LRM 13.4] are discussed in Section
4.2.3, along with pragma PACK. Address clauses [LRM 13.51 are discussed in Section 4.1.4. The
compiler designer can specify new attributes.

Currently, an ART implementation can limit its acceptancL of representation clauses to those that can

be handled simply by the underlying hardware. Except for address clauses, the compiler and ART
must guarantee that the net effect of the program is not changed by the presence of clauses, either 4B

for parts of the program that interrogate representation attributes, or for length clauses of fixed point-%

types. The compiler designer determines the interpretation of the expression that appears in the .,

representation clauses. Similarly, it defines how literals and aggregates are represented in the ex-

ecution program. This can affect space tradeoffs [ARTEWG 86d]. Use of enumeration representation

clauses [LRM 13.3] may lead to inefficient implementation. Restrictions on record representation

clauses are left to the implementation to be defined. The LRM defines no ordering of bits, nor does it... %

determine whether a component can overlap storage units. %

1

CMU/SEI-87-TR-26 53

%,.

eel

4.9.2. Package System
Every compiler must define a library package, SYSTEM, which includes the definitions of any target-
dependent characteristics. A minimum set of features must include those such as types ADDRESS
and NAME, and constants SYSTEMNAME, STORAGEUNIT, MEMORY-SIZE, MININT,
MAX INT, MAXDIGITS, FINEDELTA, and TICK [LRM 13.7]. The ART may provide capabilities for
the programmer to alter some of these features via pragma SYSTEMNAME. The compiler designer lot
is free to choose its target's most suitable values for the runtime constants and variables [LRM 13.7]
of package SYSTEM.

4.9.3. Machine Code Insertion
Ada provides the ability for a programmer to insert assembly cooe statements directly into compiled -

Ada code [LRM 13.8(3)] and defines a number of limitations on the constructs permitted in the body
of a code procedure. Further limitations can be defined by the compiler designer. The LRM may
impose further restrictions on the record aggregates (which represent the machine instructions) than
those which Ada normally requires for record aggregates. Programmers will most likely need some
knowledge of the ART system in order to write assembly code inserts.

An implementation, 0f it supports machine code inserts, is free to provide pragmas for specifying
register-calling conventions regarding machine code inserts. It can also decide what assembly state-
ments are permitted within the inserts along with determining how the machine features are inter-
faced

There is no LRM requirement for the ART to provide any safety regarding machine code inserts [LRM
13.8]. That is, an Ada compiler could perform optimizations across any programmer's assembly code
inserts without the programmer's knowledge. In effect, the programmer may not have the control
expected.

4.9.4. Interfacing Other Languages
Subprograms written in other languages can be called from an Ada program. Pragma INTERFACE,
which indicates this, is discussed in Section 4.4. The compiler designer must define any calling
conventions, parameter passing, exception handling, storage, and tasking ramifications. .

Pragma INTERFACE, if provided, requires the ART to define the semantics of the conventions of
interfacing. This is a tricky issue since the other language may not have similar runtime semantics or
concepts such as exception handling, tasking, dynamic storage (de)allocation. For example, how
should the ART recognize errors occurring in the non-Ada code, and does the non-Ada code need to
know anything about the status of an Ada caller?

4.9.5. Eliminating Checks
Library subprograms, UNCHECKED DEALLOCATION and UNCHECKEDCONVERSION, permit a
way of bypassing Ada's checking conventions. UNCHECKEDDEALLOCATION is discussed in Sec-
tion 4.1.2. It is entirely up to the programmer to ensure that there will not be subsequent use of the ""

same item by another access variable, which could have dangerous and unpredictable results.
UNCHECKEDCONVERSION coerces a value into that of another type without changing the bit
pattern. This permits a way of bypassing the compiler's strong typing features but places the onus on

%I

54 CMU/SEI-87-TR-26 J

%=1P

the programmer to provide the type checking that the ART would have done. The LRM does not
define whether the objects need to be of the same size for conversion.

J

4.10. Conclusion
.J

This chapter has highlighted many of the compiler and runtime options that compiler builders have
when developing an Ada compiler. Any compiler buyer, in particular an embedded systems designer,
will need a thorough understanding of the ramifications, in terms of functionality and performance, of
the options provided by the compiler. Apart from optional features of compilers such as those of
Chapter 13 and pragmas, the storage, tasking, and exception management will provide runtime over-
heads in an embedded system.

Ada does have a complex runtime system as far as embedded systems developers are concerned.
The Ada Language Reference Manual requires the compiler designer to document any of the
implementation-defined features given in its Appendix F, such as:

" effect of pragmas

" name and type of attributes
" specification for package SYSTEM "'

" restrictions on representation clauses
" naming conventions
" interpretation of address clauses

" restrictions on conversions and characteristics of input/output packages

Unfortunately, many implementation-dependent aspects could go undocumented.

It is clear that an Ada runtime system implementation involves a complex interface between the .5

compiler and the ART routines. Unlike other languages, such as C, a programmer cannot directly
use ART routines without a clear understanding of the runtime system. It would be desirable to have
a separation between the ART routines and code that the compiler generates. ARTEWG [ARTEWG
86c] recognizes the need for runtime systems to be interchangeable. This would be quite a complex
design since the dividing line is so fine between the compiler and runtime system. Also, it may be
possible for compiler vendors to build a generic ART that enables compiler buyers to completely tailor
their ART, as suggested by SofTech [Grover 83]. But it is expected that such generic overheads
would not be suitable for real-time performance requirements. Another important issue is when these
options are bound, that is, at runtime, compile time, or load module generation time [Lomuto 83]. It
may be that not every embedded system requires all the facilities of Ada since an embedded system
generally makes tradeoffs for performance over functionality. Similarly, it may be that different proces-
sors within the embedded system use only certain parts of the ART and may not need, for instance,
the tasking manager. -.

Due to embedded systems requirements, Ada compiler buyers prefer a customized ART [Bamberger .- '"

86, Grover 85a, Hood 86, Pepper 86, Rodriguez 86]. Tradeoffs need to be considered whenever
options and tailoring are desired. ARTEWG [ARTEWG 86d] is developing a document which dis-
cusses all of the implementation-dependent issues in which compiler designers are interested, (The "

CMU/SEI-87-TR-26 55
-s

major issues were included in this chapter.) A compiler buyer must select an Ada compiler and So

runtime system with care. The demarcation between the compiler buyers and compiler designers
responsibilities may be fuzzy. Buyers are starting to ask, "How much will it cost to meet performance 1" ,6

requirements using such features?" [Lomuto 82]. t,

For a compiler buyer, it is prudent to conduct test measurements by building tools and defining let.,
metrics before purchasing, to ascertain any restrictions and timing limitations of Ada runtime environ-
ments [Ruane 85]. A designer of a real-time system must understand the Ada runtirne system along .

...

with the real-time system. Benchmarks are being used, such as those of Clapp [Clapp 86] and -

e.-

MITRE [Ruane 851 for determining some performance factors. Programming idioms can reduce run-.-'

S..

time overheads, but this is not enough to significantly reduce performance problems. No single

...

runtime environment can be satisfactory for every user [Grover 83]. Once performance overheads

are known, policies for Ada programmers can be enforced. These policies can describe the best
usage of features for giving the most suitable performance at execution time. o pe

ARTEWG is providing assistance in increasing awareness of the problems of implementation-defined

options by documenting many of the runtime issues. "The current generation of Ada runtime systems
is sufficient to pass validation; but lacks additional runtime capabilities, such as speed and compact- [-pp8],n

ess, needed for real-time applications" [ARTEWG 87b]. Customizations do not really affect the

validation concept since a tailored compiler can pass validation-the compiler must include only the

minimal facilities to pass validation. However, customized portions of the compiler cannot be vali-

dated. Validation exists to stop the proliferation of nonstandard Ada compilers, but differing compilers
do result from custorizations. ARTEWG is attempting to define a common runtime model and a set

of features that Aida compiler implementors would implement.

The first generation of Ada runtime systems for embedded targets is not sufficiently compact,

tailorable, or efficient for those pplications" applications th[T oizatio e under stringent memory ,o
and throughput constraints. Ada implementors are compelled to make the execution function deci-

sions that application developers previously made on their own when building the execution environ-

ments from scratch [ARTEWG 87b].

of ftshA cpem mtwuile

en.,

' "'n

• -"':.-," The. firs.-". t generation"-J "ofr". .Ada runi" systems.. for, emede.trgt i.ntsufiinty-opat

. I.,

5. Ada Embedded System Development Environment
Inherent in an environment for embedded system development is the notion of distinct host and target %.'

machines. Typically, embedded software systems are developed and tested to the extent possible on
the host and then downloaded and integrated with the target hardware for system-level testing and
eventual deployment. Prior to acquiring any development tools, one is faced with the problems of
deciding what tools are needed and ultimately selecting the vendor from which to purchase those
tools. The requirements depend on a particular project's needs, whereas the selection involves
systematically evaluating the quality of the applicable products currently available in the marketplace.
This systematic evaluation can be conducted using the approach developed in Evaluation of Ada
Environments (Weiderman 87]. The purpose of this chapter is to characterize the minimal function-
ality requirements for the support tools essential (from an real-time application developer's viewpoint)
to developing and testing Ada embedded systems. Since there is an inherent host-target scenario
when developing and testing embedded software systems, this chapter will be divided into two sec-
tions: target-independent tools and target-dependent tools.

,.%'. .I

5.1. Target-Independent Tools
In developing programs for real-time embedded systems, program design, development, mainte-
nance, and management are performed on a host machine. Typically, automated support of these
life-cycle activities is provided in the form of target-independent tools running on the host machine.
This section characterizes some of the more commonly used target-independent tools used in real-.-
time application development.

5.1.1. Pretty Printer
To ensure coding conventions (i.e. indentation, spacing, paging) throughout a project, a pretty printer
is usually employed. This tool formats a file with standard, predefined coding conventions in prepa- ,

ration for printing.

A pretty printer should have a facility for changing the predefined conventions since not all projects
use the same conventions. This tool should also be easily integrated with a language-senslive editor -.'
where syntactic (and possibly semantic) checking can be performed as formating takes place.

5.1.2. Language-Sensitive Editor
In conjunction with a common text editor, a language -sensitive editor can be employed to facilitate *'

, %,I

codeenty Aevlngade-seting emeedito cosotsre souceoetempc ates that re usualy inok ec-d"

A language-sensitive editor should have facilities to support compilation, review of diagnostics, and
interaction with a symbolic debugger. The degree of user friendliness, including a lucid command
structure and a help facility, is an important consideration.

",..

CMU/SEI-87-TR-26 57 '

• ,. " ,,,"

A prttypriter houd hve faclit fo chngin th prdefied onvntins sncenotallprojcts",.,'-

* 5.1.3. Static Analyzer

%"

Characteristics of a compiled program are provided by this tool. Information (i.e., type, scope, size)
* regarding symbols used in the program may be given. Also, information about the code may be

provided, such as total lines of code and the number of comments. Capabilities may be provided to
give the user a measure of subprogram complexity and a list of unreachable statements. Compilers

:4

may provide some static analyzing functions, thus possibly eliminating the need for such a tool.

* 5.1.4. Source Code C ross- Reference r
This tool also describes attributes of a compiled program. A source code cross- reference r gives a
cross-reference table or map of the symbol definition sites and their use sites. The option to have
only a section of the code processed may be helpful. Certain compilers may also generate cross-
reference information, thus possibly eliminating the need for this tool.

5.1.5. Test Manager,,.
* A test manager helps the user to organize and execute software tests. Some test managers may

provide the capability to compare test results (i.e., if a module has been changed, how do the new

"F
testraests fe afompihed prvious ret) Trvddhis tool.matrsationoftwae. testn phsoe, ite)
syeardevelomose inrhes pormmybsgvn.lo norainaotte oemy

When looking at this tool, some of the testing capabilities to consider are creating and debugging a
test harness, developing a test plan and associated test data, and performing initial unit testing.
Regression testing, if available, is also a useful capability.

5.1.6. Configuration Manager
This tool is used to clearly identify the components of a software configuration. Software changes are

-5-

controlled, and a record is maintained of how a software system evolves and what its status is at any
given time.

A good configuration manager can be a helpful tool. Some of the functions that should be provided

by this tool are: create/modify a system element, build a system baseline, build a current system with
variant version elements, and reserve/replace/delete a particular system element. One should also
consider what information is recorded in the history log. In addition, a facility for systemelement

version comparison should be provided.

5.1.7. Module Manager
A module manager is used to build and test software modules; it may also be able to determine which

modules in a system have been changed and which other modules are affected by the changes (and
be able to update those modules appropriately).

This tool should provide capabilities to create, modify, and maintain modules, keep history records on
modules (including module dependencies), perform automatic updates to dependent modules (when

necessary), and perform automatic builds of a system. A configuration manager used in conjunction.

with this tool should provide all configuration management functions.

58 CMU/SEI.87-TR-26

testharess devlopng tes pln ad asocitedtestdat, ad peforinginital nittestng. '

.3

',..

5.1.8. Browser
When trying to understand the complexities of large Ada programs, it is important to be able to -i
browse rapidly through a program library. For example, when an object is defined in another unit, it is
useful to find its definition. It may also be useful to find dependent units or all uses of a defined
object. These and similar functions are important in an Ada programming environment.

5.2. Target-Dependent Tools

There comes a point in the software development life cycle when an application must be downloaded
onto the target machine for hardware/software integration and system level testing. The normal
downloading process involves:

S
1. Translating the source (Ada or assembler) code into target object code.
2. Linking the resultant target object code.

3. Building an executable load module from the linked object code.
4. Downloading the executable load module to the target machine. t
5. Executing and debugging the application on the target machine.

Typically, automated support of this process is provided in the form of target-dependent tools running
on the host machine. This section characterizes some of the more commonly used target-dependent
tools as they pertain to this process.

5.2.1. Ada Cross-Compiler 0
The primary functional requirement for an Ada cross-compiler is translation of Ada source code into
either target assembly or target object code. The overall performance of an Ada cross-compiler can
be evaluated using existing benchmark suites [Clapp 86, Hook 85]. Functionally, an Ada cross-
compiler should support the optional features listed in Chapter 13 of the LRM: representation
clauses, length clauses, enumeration representation clauses, record representation clauses, address ,

clauses (interrupts), change of representation, interface to other languages (e.g., assembler,
FORTRAN), and unchecked type conversions. It also should cater to real-time timing requirements

(e.g., DURATION'SMALL <= 100 microseconds and SYSTEM'TICK <= 1 milliseconds) and offer the
real-time application developer the ability to select (preferably via a pragma) the scheduling paradigm
to employ.

5.2.2. Cross-Assembler
The primary functional requirement for a cross-assembler is translation of target assembly into target .

object code. This object code must be suitable for linking with the object code produced by the Ada
cross-compiler. The integration of the cross-assembler with the compiler is highly desirable. .

5.2.3. Linker
The linker produces a load module from one or more independently translated object modules by
resolving cross-references among those object modules. Depending on the nature of the target's ,

execution environment, the load module produced by the linker may be suitable for immediate
downloading to and execution on the target machine. However, if runtime routines, target-specific

CMU/SEI-87-TR-26 59

0' =

services, or a target kernel also need to be linked with the application object module(s), the load
module produced by the linker is not suitable for execution on the target machine. Typically, another
step involving building a system load module is necessary.

The linker should support a comprehensive mechanism (e.g., a map file containing an object module
synopsis, a module relocatable reference synopsis, and a list of symbols by name) for summarizing
the load modules that it creates. The linker should also generate a symbol table file containing the "
load module's global symbols and make those symbols available to the debugger and dynamic
analyzer at program runtime. It should also support selective linking of the object code modules for
runtime routines and target-specific services, as well as the ability to specify (in a text file) the names %
of all object code modules produced by the cross-assembler that are to be linked together with the
Ada code.

5.2.4. System Builder
The system builder tool is normally provided in either of the following cases:

1. The target's execution environment has a small operating system or a real-time kernel '
that must be linked with the application object module(s). r

2. More control over the mapping of code into target memory (e.g., loaded into ROM) is
required.

A system builder utility must potentially combine one or more application load modules, a kernel
image, and any necessary rijntime or target-dependent service images into a single executable sys-

tern load module suitable for downloading to and execution on the target machine. As with the linker,
the system builder facility should provide a comprehensive mechanism (e.g., map file) for summariz-
ing the system load modules that it creates; and it should also provide selective linking of the object

code modules for runtime routines and target-specific services. --

5.2.5. Load Module Downloader/Receiver
In order for an application to be executed on the target machine, it must first be downloaded into the

-.-,
target's main memory. Normally there is a download/receive tool (running on the host, target, or both a'

machines) for loading an application's system load module into target memory across a communi-
cations line or through another medium. It must also support the process of triggering the execution
(booting) of the application code on the target machine. I-'5.
5.2.6. Symbolic, Source-Level Debugger -"

A target-dependent, symbolic, Ada source-level debugger provides a mechanism (via minimally

single-stepping execution) for testing and detecting errors in an Ada application executing on the -5"

target machine.

The source-level debugger should support facilities including, but not limited to, setting'resetting
breakpoints and tracepoints, single-stepping program execution in increments of single hardware
instructions, setting breakpoints on exceptions, setting breakpoints on task context switches, control
ling program execution path (e.g., execute 10 statements, enter a specified subprogram), querying
the program's execution state (e.g., examine values of program variables, display runtime stack) and
modifying the program's execution state (e.g., modify variable values). It should also supprt both a

60 CMUISEI-87-TR-26 ."S

. .. -. ~ .. ~ .i-~-,- ..' . JR 4 ~

local and remote mode of operation and offer target-dependent facilities for monitoring and controlling I
the resources of and software running on the target machine.

5.2.7. Dynamic Analyzer
A dynamic analyzer is a tool that aids in the tuning evaluation of an application's performance by I* %
monitoring its execution behavior. A dynamic analyzer should collect and analyze application perfor-

mance data such as: program counter sampling, control path coverage, statement execution fre- W'

quency and timing, input/output statistics, and system service calls. It should provide the capability of
analyzing this performance data and reporting it in an effective manner (e.g., histograms, tables).

5.2.8. Simulator
A target simulator is a computer program that simulates the behavior of the target machine by
representing its physical characteristics. Target simulators are used in lieu of the actual hardware for

testing purposes and thus simulate the execution of system load modules suitable for the target
machine.

A target simulator facility must accurately emulate both the functional and temporal behavior of the
target's instruction set architecture. It should provide access to all memory locations and registers U
Furthermore, it should support typical features found in a symbolic debugger (e.g., single-stepping
instruction execution, examination of variable values) augmented by the capability to perform timing
analysis (e.g., how much time elapsed when executing the last 10 instructions). It should support
simulated input/output interaction by providing access to I/0 ports, device control and data registers,
and emulation of the architecture's interrupt mechanism. Finally, it should facilitate the set-up and
reuse of test sessions by allowing freezing of the current session's context, executing debugger

commands from script files, and supplying I/0 data ftom existing data files.

5.2.9. Real-Time Monitor
In order to monitor the target system in a non-intrusive way, it is useful to have hardware or a

combination of hardware and software to help determine whether deadlines are being met and
whether activities are being performed in the proper sequence Such a device may also be used to

monitor and timestamp message traffic within a system.

5.3. Summary

The purpose of this chapter was to identiy and functionally characterize programming support toI-
that are, from the application developers viewpoint, essential to the development and testing ot Ada

ert, edded software systems The list of tools presented in this chapter is in no way comprehensive
but is intended as a enumeration of some of the more commonly used tools in a host target deve0
opment environment A list summarizing the typical functions and features of these commonly ued '"

tools follows

.%p

0

CMU'SEI-67-TR-26 "61- S .

.9,

Target-Independent Tools
Pretty Printer

" Reformats Ada code relative to a set of coding style conventions

" Supports a method for changing coding style conventions
" Operates in both interactive or batch mode
* Is integrated with text editor for interactive use

Language-Sensitive Editor ,

" Source code templates .

" Language construct expansion ";

• Keyword abbreviation "9
* Integration with Ada compiler (syntax checking, compiling)
" Integration with debugger
" Facility for reviewing syntax errors in code
" Online help facility

Static Analyzer

* Data flow analysis

* Path analysis
* Interface analysis

* Call graph analysis I.,

* Dependency analysis

* Code style analysis (LOC, number of comments, number of if statements)

Source Code Cross-Referencer

" Generates listing for each definition of program symbols

" Generates listing for each use of program symbols

Test Manager

" Creates test harness

" Creates test input data
" Performs initial test .

" creates expected output data
" produces actual output data

" compares actual and expected data

" Performs regression tesling

Configuratlon Manager

• Has create/delete element
" Creates new version of existing element (3 classes of versions) t

- successive (e g bug fix) .

62 - 4.CMU/SEI-87-TR-26

1 . .r- - . - %

* parallel (e.g., implementation for different target)
• derived (e.g., optimized module) I

" Merges variants of an element "

" Retrieves specific version of an element

- explicit (e.g., use version 4)
• dynamic (e.g., use most recent version)
* referential (e.g., use same version as used in Rev 4.0)

" Compares different versions of an element

" Maintains/displays history attribute of an element-0

Module Manager

" Defines system model
- source dependencies
* translation rules
- translation options
• tools necessary for translation

• Builds system
• current default

- specific earlier release (rebuild)

* hybrid (mixture of default versions and specific versions)

" Maintains/displays list of constituents of a built system

* Maintains/displays system build history
• date built

• name of builder
" reason for building

" options employed

" Baselines system as a product release ""

" Maintains/displays product release information
" number of distributed versions

• differences among versions

• locations of each version'
• required hardware for each version

• correlation between versions and error reports

• correlation between versions and components

• errors reported/fixed by version

Maintains/displays system release history .,

• What was built, when, why, and by whom

Reverts back to previous release environment using old binaries, source, and dependent
modules .% ,',

CMU/SEI-87-TR-26 63
*,q

*Automatically deletes unused binaries

Browser

" Finds an object's definition
" Inspects a body from a specification
" Inspects a withed package

• Inspects a called subprogram

" Finds all uses of an object

Target-Dependent Tools
Ada Cross-Compiler

" Translate Ada source code into either target assembly or target object code

" Desirable implementation features

- prints warning message for unrecognized pragmas [LRM, Section 2.8]
- provides short and long integers [LRM, Subsection 3.5.4]
• provides short and long reals [LRM, Subsection 3.5.71

• reclaims storage automatically when object becomes inaccessible [LRM, Section
4.8]

* supports pragma INLINE (The compiler should detect and flag any situations
where the pragma cannot be followed, e.g., recursive subprograms.) [LRM, Sub-
section 6.3.2]

" supports pragmas SUPPRESS, ELABORATE, LIST, and PAGE '9,

" has minimum ranges of 0...15 for pre-defined type PRIORITY [LRM, Section 9.8] ,

" provides low-level I/O packages to support real-time device drivers [LRM, Section -
14.6]

" Support for majority of Chapter 13 features L

" required features
" representation clauses [LRM, Section 13.1]

" enumeration representation clauses [LRM, Section 13.3]
* record representation clauses [LRM, Section 13.4]
" address clauses (interrupts) [LRM, Section 13.5] .

" change of representation [LRM, Section 13.6]
" interface to other languages (Assembler, HOL) [LRM, Section 13.9]
" unchecked type conversions [LRM, Section 13.10.2]

,99

" desirable features
" length clause [LRM, Section 13.2]
" unchecked storage deallocation [LRM, Section 13.10.1]

" Comprehensive documentation 9.

* Informative diagnostic (error) messages

" Clearly documented restrictions

* Clearly documented implementation-dependent characteristics (Appendix F)

64 CMU/SEI-87-TR-26 I

the form, allowed places, and effect of every implementation-dependent pragma
[LRM, Section 2.81

• the name and type of every implementation-dependent attribute [LRM, Section
4 .1 .4] Il e

the specification of the package SYSTEM [LRM, Section 13.7] I
a list of all restrictions on representation clauses [LRM, Section 13.1]
the conventions used for any implementation-generated names denoting
implementation-dependent components [LRM, Section 13.4]

" the interpretation of expressions that appear in address clauses, including those
for interrupts [LRM, Section 13.5-

" any restrictions on unchecked conversions [LRM, Section 13.10.2] 1
* any implementation-dependent characteristics of the input/output packages [LRM,

Sections 14.1, 14.2.1,14.4]

" Clearly documented known bugs
" Ability to produce at the user's option

" source listing with line numbers ,.

- cross-reference listing

" variable map
" assembly listing of generated object code containing references to source line

level and source procedure :e %

" compilation summary including
" date and time of compilation
" compilation options in effect 0
" size of the generated object
* count of source lines
" name of the object file created ..

a presence of implementor-defined pragmas
" names of packages referenced

" compiler version number

Ability to cater to real-time timing requirements ,
• DURATION'SMALL <= 100 microsecond
* SYSTEMTICK <= 1 millisecond

• Selection (preferably via a pragma) by the real-time application developer of the
scheduling paradigm to employ from various options

Cross-Assembler

" Translates target assembly code into target object code
" Generates assembly language listings
• Integrates with compiler

Linker

* Produces a load module from one or more independently translated object modules by
resolving cross-references among those object modules

CMU/SEI-87-TR-26 65

*Generates a map file containing an object module synopsis, a module relocatable refer-
ence synopsis, and a list of symbols by name for summarizing the load modules

* Generates a symbol table file containing the load module's global symbols and makes
those symbols available to the debugger and dynamic analyzer at program runtime

a Supports selective linking of the object code modulesakenligaday

necesar rulim ortaret depndet srvie iage ino asingle, executable, system
otarget machine

* Generates a map file containing an systemtod module synopsis, a module relocatable
ence synopsis, and a list of symbols by name for summarizing the load modules

" Generates a symbol table file containing the load module's global symbols and makes
those symbols available to the debugger and dynamic analyzer at program runtime

" Supports selective linking of the object code modules

* Configures kernel for different hardware configurations
" Supports locating code in different parts of memory space

Load Module Down loader/Recever

" Loads an application's system load module into target memory across a communications
line or through another medium

l Controls appuication execution
- triggering
- halting
- suspending
-fresuming

Symbolic, Source-Level Debugger

" Sets/resets breakpoints and tracepoints

" Single-steps program execution in increments of single hardware instructions

" Sets breakpoints on exceptions

" Sets breakpoints on task context switches

" Controls program execution path (e g. executes 10 statements, enters a specified
subprogram)

" Queries the program's execution state (e g , examines values of program variables. dis
plays runtime stack)

" Modifies the programs execution state (e g . moddies variable values)

• Supports both a local and remote mode of operation

* Offers target -dependent facilities for monitoring and controlling the resources and soft
ware running on the target machine

Dynamic Analyzer

*Collects and analyzes application performanc-e data
" program counter sampling

* cntrolt patoverasecto statee , exuinevaus prgmvrabsds

66 CMU SEI-87-TR-26

pasnWme stfck-

*, ** ,* 4 4 *. 4~% Modifies .h prga's execu-onrste(gd. mdievar.-able va-lues) -.- * ,-.-- -- 4

• Suportsbotha loal ad remte mde o opeatio

,%

- frequency and timing
* input/output statistics
* system service calls

I".

Provides the capability of analyzing application performance data and reporting it in an
effective manner

* histograms %
) •tables

Simulator

* Accurately emulates both the functional and temporal behavior of the target's instruction
set architecture

* * Provides access to all memory locations and registers ,

* Supports typical features found in a symbolic debugger
" single-step instruction execution
* examines variable values
" start/stop program execution

* Performs timing analysis (e.g., how much time elapsed when executing the last 10
instructions)

e Supports simulated input/output interaction
• provides access to I/0 ports
* provides access to device control and data registers
* emulates the architecture's interrupt mechanism

* Facilitates the set-up and reuse of test sessions
" freezes the current session's context
" executes debugger commands from script files ,-,.
• supplies I/0 data from existing data files

Real-Time Monitor

" Checks deadlines
* Checks sequencing
* Checks and timestamps message traffic

a6.7

o

I

4CMUSEI-87.TR-26 - -- -- __ _____7____ -- ,

. .-- ., -. -.-* ...-. -. .--.- -- -..•.... . • .- .. -. -.-. .,,:i:. .. -" " - -" '- -" " " " " " . . " . . "' " .. . = " ' "-- , " " " , . , ' . ',. : '..,', . ".

~J~W'3~ -~ -~ -~ '~ P -~ A~V .~ ~wru -~ '~ ~ ~. ~.. ~

aja

.5

w

V.

.5

5%

a-

- .1

'I

at

*~ (S

.5

~Ja

aS

'a

'at

'a

-p

1~

.5

"a

a,.

-, I

68 CMU/SEI-87-TR26 I
-I ~

a a~ a S

''~~ p ~ '#-.;~ ~ ala a.; Kaa.aa~a~ P

6. Summary and Preliminary Recommendations I
This chapter categorizes and summarizes the various kinds of issues which accompany the use of
Ada in embedded systems. Whereas Chapters 3, 4, and 5 deal with the details of the issues, Chap-
ter 6 attempts to identify and clarify the global issues. In this chapter we also make some preliminary
global recommendations on the basis of our reading and initial investigation. What has become clear
is that there must be cooperation and communication among the various groups concerned with Ada
in order to make Ada a viable option for embedded systems. If any of the groups (applications

developers, program managers, implementors, or policy makers) act independently, suboptimal solu-

tions will result.

Chapter 2 establishes the requirements of the embedded systems problem domain, which are quite

different from those of traditional information systems. These systems monitor and control their

environment, exhibit logical and physical parallelism, have severe timing and resource constraints,

and require special tools for software development. It is clear from these requirements that im-
plementors cannot provide their products without considering the unique requirements that face the
application developers.

Chapter 3 deals with language issues particularly pertinent to embedded systems, such as tasking,
inter-task communication, time control, input/output, internal representation, error handling, and nu- :%

merical computation. Since there are so many features in the Ada language, there are many options

for programming in Ada. Programs can be written in the style of FORTRAN, but this is clearly not the
best way to exploit the software engineering benefits of Ada. At the other extreme, if the full power of
Ada is used, there may be performance penalties. The tradeoff is to make maximum use of the

functionality provided while still meeting performance requirements. Thus the application developer
must have a "bag of tricks," or programming idioms, which provide the optimal solution for the prob-

lem at hand.

Chapter 4 deals with implementation issues. Here, because of the latitude provided by the Ada
reference manual, the implementor must decide how to provide capabilities. Because of the eco-
nomic pressures of validation, as well as the difficulties of implementing the more novel features of

Ada, the implementors have often chosen the simple solutions rather than those which make the

most sense for embedded applications. As a result we find few compilers that do garbage collection,
for example. Issues that are critical to developers, such as scheduling algorithms, timing control, and
interrupt and exception handling, have been solved in a variety of ways. Until recently, the problems

of the Ada runtime environment have received little attention compared to that given the syntax and

semantics of the language.

It must also be noted that implementors are governed not only by the LRM, but also by interpretations
recommended by the Language Maintenance Panel and approved by the Ada Board. These so-

called Ada Issues (Als) are identified by a sequential numbering system and resolve questions and -.

ambiguities in the language. They now number in the hundreds and, when finally approved, are

binding on implementors.

.9

CMU/SEI-87-TR-26 69

," " . - ' f., , . ".-% ".*' '' ',' ,. . ' , ,. ._ .. . , .: ,

,e

Chapter 5 gives a brief overview of the tools necessary to support a host-target development system.
These tools were enumerated and described in general terms. Future activity of the AEST Project . .

must concentrate on evaluation criteria for these tools so that their state of readiness for software
development can be determined,

6.1. Preliminary Recommendations
It is too soon to make definitive recommendations on a wide variety of issues concerning the use of

Ada in embedded systems. Only experimentation and experience with the Ada tools becoming avail-
able will permit us to draw meaningful conclusions about the state of the technology. However,

based on a literature review, a review of DoD Ada policy, and an evaluation of the product literature

available as of December 1986, it is possible to make a few preliminary recommendations. These
preliminary recommendations will be expanded as more experience is gained with the testbed and as

more experiments are conducted.

6.1.1. Recommendations for Application Developers

iApplication developers need to understand the various programming paradigms in which L

particular language features can be used.
*Application developers need to have a detailed knowledge of the programming alter-

natives and corresponding tradeoffs associated with using or not using particular Ada
features.

* Application developers must understand the machine dependencies and the features
dependent on their particular implementation of the Ada language.

" Programmers must understand how the runtime system works so that they can evaluate
predictability and performance and bolster their confidence in controlling the underlying
resources.

* Programmers must understand the tradeoffs between absolute control of every resource
in an embedded system and good software engineering practices that promote maintain-
ability and reuse.

" Application developers must recognize that design decisions may be governed by perfor-
mance and features of the particular Ada implementation they choose.

6.1.2. Recommendations for Program Managers

o Program managers should be aware of the metrics and test suites available and should
be able to apply them and evaluate the results before procurement decisions are made
for Ada implementations.

e Program managers must become more knowledgeable about the nature and impact of
Ada runtime environments. They must be aware that many functions previously under
control of their application programmers will now be under control of the compiler im-
plementor.

* If Ada is mandated for a particular embedded system project, cost and schedule risks
must be carefully evaluated because of the immaturity of the technology.

* Funding of Ada tools and, particularly, Ada runtime systems should be expected for
several more years. .

* Validation of an Ada compiler should be only the first of many steps in the evaluation of a

compiler and its associated tools. Program managers must recognize that performance
and usability are not covered by validation.

7I

70 CMU/SEI-87-TR-26 ,

...........*- . • *..* .: **..o . *. ...

-,,S.,

Program managers should generate detailed requirements for development environment
tools specific to the application, then evaluate and select the tools based on these re-
quirements.

6.1.3. Recommendations for Compilation System Implementors

* All Ada compiler vendors should answer the questions posed in Ada-Europe's 'N
"Guidelines for Ada Compiler Specification and Selection," by Nissen and Wichmann
[Nissen 82]. In general, they should provide extensive information about how the run-

time system works.
* Vendors should provide the user with the capability to configure the Ada runtime system

to suit the application program. They must foster a high degree of interaction with the
customers.

* Vendors should recognize that in many time-critical applications, there is a need to sacri-
fice generality for efficiency. Vendors need to provide implementation-dependent prag- 6
mas for this purpose.

* Implementors must be sensitive to the requirements of the mission-critical application
domain. In particular, they should identify metrics for performance and strive to achieve
a minimum level of performance for those features that are important to the application.

6.1.4. Recommendations for Ada Policy Makers

* The current emphasis for the Ada program should be in the areas of performance and
functionality. After there have been some successes in using Ada in embedded sys-
tems, the policy can place more emphasis on portability, reusability, and productivity.

" Instruction set architectures such as the MIL-STD 1750A must be evaluated with respect
to their suitability for Ada; there may be mismatches between architectures and the lan-
guage. Policies that promote newer architectures for Ada should be considered.

" More emphasis should be placed on the Ada runtime system as opposed to the syntax,
semantics, and validation of the language. L' ', funding or attention has been paid to
ongoing work, much of which is of high quality.

" Policy makers should address the implications of the proliferation of different runtime
systems due to the implementation dependencies of the language.

" The ramifications of options for addressing language problems need to be explored.
One option is to change the language, and the other is to add support packages that .

circumvent those problems. The tradeoffs include compatibility, portability, performance,
and validation issues.

6.2. Future Work
This report suggests that there is a great deal of work to be done in investigating the use of Ada for
embedded systems. Some of this work can take the form of introspection and study, but much of it
requires experimentation in a laboratory setting. The Ada Embedded Systems Testbed will provide S

the vehicle for experimentation. We propose that three levels of experimentation take place. They
are:

1. Stand-alone benchmarks and testing of language features.
b 2. Experiments using several features of the language which test commonly used algo-

rithms and programming idioms.
3. The implementation of a complete embedded system application with real-time con-

straints.

CMU/SEI-87-TR-26 71

o • - o . ° ° . .e . . o - . . ° . . •° .•• . . • • o. _ .

6.2.1. Stand-Alone Tests
The University of Michigan, Performance Issues Working Group (PIWG), and the ACEC test suites

are (overlapping) attempts at creating short Ada test programs to evaluate the performance of certain
Ada language features. These programs provide timings for fine-grained features such as task crea-

tion, rendezvous, and termination; subroutine invocation times as a function of the number and type

of parameters; and exception and interrupt handling. These tests should be executed on several
target processors; and after evaluation of the coverage of these tests, new tests should be added to
provide additional coverage. To date, little data is available on the performance of Ada on bare target

machines.

6.2.2. Algorithmic Experiments
At the next level, it is necessary to conduct experiments using the algorithms and programming

idioms typically found in embedded systems. These algorithms use several language features and
,1,

test the interaction of these features. Algorithmic experiments address the choices which must be
made by the application developer. For example, the system designer must decided early in the

design process whether to use event-driven scheduling and tasking or a cyclic executive. Experi-

ments at this level would provide insights into the tradeoffs resulting from these decisions.

6.2.3. Real Application
Finally, there needs to be a demonstration that Ada can handle a real-time application typical of many

different applications in the mission-critical arena. An application needs to be complex enough to be

credible to the MCCR community but small enough to be tractable for a small group to implement in

six months or less. The application must handle real-time inputs with time constraints on the order of

a small number of milliseconds. The testbed must faithfully simulate the actual environment in which
the target processor will eventually reside. Once implemented, the application will serve as a gross

test of the runtime environments of different compilers on different processors.

6.3. Conclusion

This report has attempted to raise many of the issues which must be addressed if the Ada program is

to be successful. There are issues for the application developers, the managers of programs, compi

lation system implementors, and Ada policy makers. As the Ada Embedded Systems Testbed Prol

ect at the SEI progresses, these issues will come into greater focus. As more experiments are

conducted on a variety of Ada tools and target processors, our recommendations will become more

detailed and complete.

72 CMU SEI-87.TR-26

- J.% '..,.% .% *.% -~.%'..%.

References
[Altworth 81] Allworth, S.T.

Introduction to Real- Time Software Design.
The Macmillian Press, Ltd., London, 1981.

[Ardo 83] Ardo, A. oe%

Considerations for Full Ada Implementation on an Experimental Multiprocessor --

Computer. A
Technical Report, University of Lund, December, 198,3.

JARTEWG 86a] Special Interest Group on Ada, Ada Runtime Environments Working Group.
A White Paper on Ada Runtime Environment Research and Development.
Technical Report Working Paper, ACM, November 13, 1986.

JARTEWG 86b] Special Interest Group on Ada, Ada Runtime Environments Working Group.
A Canonical Model and Taxoncmy of Ada Runtime Environments.
Technical Report Working Paper, ACM, November 13, 1986. 10%10

[ARTEWG 86c] Special Interest Group on Ada, Ada Runtime Environments Working Group.
A Catalog of Interface Features and Options for the Ada Runtime Environment.
Technical Report Working Paper, Release 1.1, ACM, November 23, 1986. 0

[ARTEWG 86d] Special Interest Group on Ada, Ada Runtime Environments Working Group.
Catalogue of Ada Runtime Implementation Dependencies.
Technical Report Working Paper, ACM, November 5, 1986.

IARTEWG 86e] Special Interest Group on Ada, Ada Runtime Environments Working Group.
First Annual Survey of Mission Cntcal Application Requirements.
Technical Report Release 1 0. ACM, November, 1986.

[ARTEWG 87a] Special Interest Group on Ada, Ada Runtime Environments Working Group.
A Framework for Describing Ada Runtime Environments. ".
Ada Letters 7(5), September-October, 1987.

.ARTEWG 87b] Special Interest Group on Ada. Ada Runtime Environments Working Group.
The Challenge of Ada Runtime Environments.
Technical Repcrl Working Paper, SIGAda, June. 1987.

[Baker 851 Baker T P
An Ada Runtime System Interface
Technical Report TR 85-06-05, Department of Computer Science, University of

Washington, June, 1985 .

[Baker 861 Baker T P and Riccardi, G A
Irrplementing Ada Exceptions
IEEE Software 3 (5) 42-51. September, 1986.

JBamberger 86] Bamberger J Ritter P and Wilson, J
Tactical Database Management System - An Ada Technology Project for the U S.

Army '

In Fourth Annual National Conference on Ada Technology, pages 132-141. U.S.
Army Communications- Electronics Command, March, 1986.

[Barnes 841 Barnes J G P
Programming in Aaa 2n0 Ed
Addison We-,ey Publishers Ltd 1984

CMU SEI-87-TR-26 73

[Borger 86] Borger, Mark W.
Ada Task Sets: Building Blocks for Concurrent Software Systems
In Proceedings of the IEEE Computer Society Second Internatonal Conference c_

Ada Applications and Environments. Miami Beach, FL, April, 1986

[Clapp 86] Clapp, R.M., Duchesneau, L., Volz, R.A., Mudge, T.N, and Schunze T
Toward Real-Time Performance Benchmarks for Ada

Communications of the ACM 29, #8(RSD-TR-12-86), August 1986
Pages 760 - 778.

[Cornhill 87] Cornhill, D. and Sha, L.
Priority Inversion in Ada.
Ada Letters (7), November - December, 1987.
Pages 30-32.

[Downes 82] Downes, V.A. and Goldsack, S.J.
Programming Embedded Systems with Ada.
Prentice-Hall International Inc., 1982.

[E&V Team 84a] E&V Team.
Evaluation and Validation Plan.
Technical Report, Air Force Wright Aeronautical Laboratories. Wright Patterson

AFB, December, 1984.

[E&V Team 84b] E&V Team.
Requirements for Evaluation and Validation of Ada Programming Support Environ

ments, Version 1.0.
Technical Report, Air Force Wright Aeronautical Laboratories, Wright-Patterson

AFB, October, 1984.

[E&V Team 84c] E&V Team.
APSE Analysis Document.
Technical Report, Air Force Wright Aeronautical Laboratories, September, 1984

IE&V Team 851 E&V Team.
Technical Coordination Strategy Document, Version 2. 0.
Technical Report, Air Force Wright Aeronautical Laboratories, August, 1985 ,

[Fairley 85] Fairley, R.E.
Software Engineering Concepts.
McGraw-Hill, 1985.

[Foreman 87] Foreman, J.G. and Goodenough, J.B.
Ada Adoption Handbook: A Program Manager's Guide.
Technical Report CMU/SEI-87-TR-9, Software Engineering Institute, May, 1987.

[Graumann 86a] Graumann, D.M.
Minutes of the Ada-JOVIAL Users Group.
Technical Report, Language Control Facility, Wright-Patterson AFB, Ohio, July

7-10, 1986.
Los Angeles, CA.

riraumann 86b]
Minutes of the Ada-JOVIAL Users Group.
Technical Report, Language Control Facility, Wright-Patterson AFB, Ohio, Novem-

ber 17-21, 1986.
Charleston, WV.

• 4 CMU/SEI-87-TR-26
-9

. -• . ".''-.-"- .'-" ''", /.'."''.' -'"'--i' ;'"-" %'"-"; ' ." % "- -" "- ""'--W -. ' -'-'" -"-"","

",F a 4'~~ '4 *~, a

If,, -'~d 'iV -1 41!,l

"~''I,cv 0ai~rv'.

f#- 0- S, A ,

- ~ A A 'f 1 ,A K, II 4 '' '~I

A* A

f' A,~, r1~ _4 eI' ,, A'a

Ar~' a, r, Ndf(

ko* dst'~A- AId 4(Y Ar ua N

(3)7r,un s r A0i.i ,~l.'4 d

T E~h)(di Hfpor? '1 '4 4 'y),A f - At~,,

AN'.. W Vt) IP JA .',

IWaCt arer, 8 0] Mad arefl
Evolving Tow*ard Ada 'n ki',aj

T irt. 1+!~rp

In ProCeedings 'the A(k4 5U~jD~a)rrsurr Cr, 1h# Aqjd Prc-q'arn)r"n

Langjagft N()vemrtwr (

[NAVSEA 831 NAVSF A
Add Huniime ui5ppo" I nwenrfmi-I /inQulpms"f 5lcy*
Technical Repori 094F' 7 P 5989V70 NAK'A A Aurgusl 1983

[Nissen 821 Nissen J C P anid Wichmann f3 A
Ada Europe Guidelines for Ada (,ompoler Spectic4ajtcn and Seleclion
ACM Ada L ellers 35 50, £2. March 19832%

CMU/SEI-87-TR-26 75 1

i
i

[Pepper 86] Pepper, W S, IV.
An Experimental Utilization of Ada in Real-Time Interactive Avionics Communi-

cation Application ,-
In Fourth Annual National Conference on Ada Technology, pages 8-12 March,

1986.

[Pierce 86] Pierce, R.H, Marshall, I., and Bluck, S.D.
An Introduction to the MoD Ada Evaluation System
Technical Report Report Number 5485, Software Sciences Ltd , June, 1986

[Pressman 82] Pressman, R.S'
Software Engineering - A Practitioners Approach.
McGraw-Hill International, 1982.

[Reino 86] Kurki-Suonio, R.
An Operational Model for Ada Tasking.
Technical Report 1/1986, Tampere University of Technology. 1986

[Rodrigue." 86] Rodriguez, T and Griffin, L
An Ada Tracker - Experiences and Lessons Learned
In Fourth Annual National Conference on Ada Technology. pages 1 7 U S Army

Communications- Electronics Command, March, 1986

[Ruane 85[Ruane, M F , Cheikes, B A, and Galia, J H
Ada Runtime Environment Characterization for JAMPS
Technical Report MTR-9614, MITRE, September 1985

[SotTech 841 SotTech
Real Time Ada
Technical Report OAAB07-83-C-K514 US Army Communication and Electronics

Command July, 1984

Sonicratt 86} Sonicraft
Sonicraft Experience with Ada in Weapons Systems
Technical Report Presented at the E&V Team Meeting Dayton Ohio June 4

1986

jSqijire 85] Squire J
Performance Issues Working Group Workshop
Technical Report ACM SIGAda Users Committee Baltimore MD July 15 and 16

1985

[Squire 861 Squire J
Performance Issues Working Group Workshop
Techn cal Report ACM SIGAda Users Committee Fort Lauderdale FL March

1986

[TALC 861 The Analylical Sciences Corporation
E & V Classification Schema Report Draft Version 2 0
Technical Report TR 5234 2 TASC July 1986

I IIAIM 85] Texas Instruments
APSE Interactive Monitor Final Report on Interface Analysis and Scftware Engi

neering Techniques
Naval Ocean Systems Center Contract No N66001 82 C 0440 Equipment Group

ACSL July 1985

76 CMU/SEI-87-TR-26

bi-.7V M' VW- Irv. ,-

[Weiderman 87] Weiderman, N H. Haberman, A N, et al.S.-*

Evaluation of Ada Environments.
Technical Report CMU/'SEI-87-TR-1, Software Engineering Instilute, March, 1987

p-A

*%. -'.. '

% %

CMU/SE-87-T-26 -

I

Tecnial/eprtIMUEI87TR-,SfwaeEgnern
nsiue6M rh 9 7 7-

, 6,, i.

-. -. ',~. p.,* p - .~ ~..p - .- ~ ~e ~ ~- V -- V-:;-2M' -:--.,

ww~~ w~w!~m ~ -, 'V~N~-. ~~q-~*--~ ~/ -vv -'p -~-~a.

I.

I

"p

.5,

C,

5.

-S

I

5,

.1~
V

.5.

.5.

.5.e

.5.

.5.

.5-
.5

S

.5.

5.

S

.5.

*55

-. 5.

5.

p.

S
5%~

5'

"p

78 CMUSEI-87-TR-26 S

• .%

* .. *-*

S'. %,

Appendix A: Annotated Bibliography J*

I1l Ardo. Anders
Considerations for Full Ada Implementation on an Experimental Multiprocessor Computer
Technical Report DDI, Department of Computer Engineering, University of Lund.
December. 1983

Abstract/Summary: This paper analyzes Adas requirements on a multiprocessor architecture..'
and develops mechanisms supporfing an efficient implementation The mechanisms are
designed to minimize the global c:ommunication and maximize the use of local resources
This paper also suggests some internal control data structures that speed up the .

mechanisms

[2] ARTEWG
A Canonical Model and Taxonomy of Ada Runtime Environments
Technical Report SIGAda.
November 1986

Keywords: Ada runtime abstract machine embedded system
Abstract/Summary: The concept of a runtime environment has already been used with appi

cation software I1 has only been with programming languages like Ada that the concert ,

has become more apparent This short paper is meant to explain the basic elements o
Ada runtime environments It presents an historical perspective on runtime environments
which leads into a description of a model of runtime environments A concise and consul.
tent set of terms are proposed to describe the elements of Ada runtime environmrnts .
Finally a taxonomy for the runtime environment is presented

This is a good syncpsis o the advent of high level language runtime environments with plenty
of diagrams to illustrate points Issues discussed are kernel executive library of runtmne,
routines and separation of responsibility between the programming language translator
and runtime routines The taxonomy for the Ada runtime environment is storage mandqIcp
ment processor management, rendezvous management task activation task term ria?,cr .

interrupt management I 0 and time management " -

' ARF WG .".

A Catalog of Interface i eatu, ,s and Options for the Ada Runtime f nvronmrents -
Technical Report 1 1 SIGAda % del
November 1986 S

Keywords: Ada runt me
Abstract/Summary: The Ada language intentionally (necessarily) leaves the detills of nriar.

important capabilities of the Runtime system to the individual implementation sI(h 1
scheduling regime interrupt control storage management and so on In rmlany a :i -

ttons such capabilities and services are essential to the successful realizatlion ot the I.r,.-
ecd. and will of necessity be provided Since the user s interlace to these capabtli t,.
often not specified in great detail, implementations will differ as they emerge

The objeclive of this document is to propose and describe the first of a common set of user
RTE interfaces with which a programmer can both request services of the RTL and lailor
the RTE to meet application specific requirements By the word "commcn " we mean thait
Implementation are intended to provide descriptions in such a way that programmers need
not leam a new interlace when using a different Ada implementation e-

It should be emphasized that although the language is by no means perfect we do not view it S
(as describ I oy the language reference manual) as being deficient in all of the are,v.

addressed (although implementations often are) Highly application dependent require
me')ts are not appropnately to be found in a language reference manual However in0

keeping with the concept of -extensibility i implementatons should be expected to exten'
the language in the RM prescnbed manner to meet application specific requirements
Thus many 'language deticiencies" are more correctly expressed as "procurement

.% 9

CMU/SEI-87-TR-26 7

• .o ,... *

issuies Those imple mentaltons wich exp?cl It suc(ei it) A~ j)iV 1dr a'ri-elf~pIa 0.
expect to supply the capabilities necessary to nwel the sq~w fix e(Awir)Pnt'. ,f tfi
mari'ketplace The Interfaces *hi h ollovi ar.p an. jii.rwi to pro ,I .l wnrir iair Ail It:-
user level for some* of the initial capabililiecs thti will oftlte, erwqijoried

T tiej areas of interest in this paper are control Of rTPrnorv FTa, aQerfi~I (lilFitJ0 1

multiprogramming application access to the rnachrwj prediiitbit timooirv mfl~rtrf I

scheduling fauft tolerance pre elaboration and critical sections This, inlefestirl w*,'- ~
discusses the interlace signatures and gives emampls of the lfiir~nI (_atakij Porffri"
non preemptible seclions special delays pre elaboration of program wl tipk oil'.I s ..
abortion via task~ identifiers transmisson of task idjentiffierc t)Pttimiope' tasi.'. ntf-ri -Ix~4
acjement dynamic prioiie time -Ici;ng fast Inte'rrupt pfa(nma. SYfw lforq r 4 (jl ar11

* ~~~~~chronous task scheduling D)eferred itemse are %forage rTIAri,.q4.rti.ri fwiiif J
distributed pri>cessrc multilevel socurtiv r lit),j{ II (.{qwi ho(*...pI41 *f..i

rT'r'iitoric; and garbage (orlle(tiorn T tp de(l~Ia , p,ri ofi III f~pi * '..~,I ,vlvilable toc Is~sthruqth an Adja piNqrari t lirary

* ~ ~~i o$U ,) A(1,.j ~r ~ i?,rr'# kiieriv#f r1'ri .

Keywords Arj iiryie m

Abstract Summriaryv I rn. mr,ir (4I ii nttII atal.II . tw ' r,,, , ~ ** ,

of theh;* 4e),g I 'i'wiQ'dII'11.4,),#i14i1 41 .f

A 4T~ I W(i hics ari'liy "(lr hgo j $4M ri I ti' (II10 r AC Hf iil#srl flt. ivr1 . ~ i.

I.'t

fIX 4i ' 'l f.. jif .. It- *.i
0

,

nieT otrif~ 41,ir t 0 f ,i r ak 'q J& 0 vo '4 1 .I

r ~~~Aft lte,. t~pI.~i- *1 4i teil ti t,..4i''J. a jfv i , *.. P- t q

4(Kj pt Ada ,tfIj' A,,# Aiiii o~ t ,4 .,fP,.*. , .

of tlii-' fti 4 Ii. 0. fi'i a iio. f, 1*i' 1t. AN 1, 1 r, f io-

IC. jI It if.-o j~l dr fher.,l A44,rm i 4 11r~ Iho j4li'i
4

414. III 'i ~~.. '

de fp a1 P' W lt.4 1, J I'V 1 w 111 41 w f 4 1.,#

Ai I wIi

e (hp~eo~, k 4jyj It~ t~

,,rt# I tIM 7
Keywords AdJ,, uint'r,0
Abstrart Sumrmary ltii ~VtI i'a -fl 1)'i'Ssrl'. ift ie,aiwatiol, t~i Itit AIM, ii,,ritii4 I ri.r

rine~rit l
4 ifilliil I I Aliu 414 VV $, ofl i 1 'ti far) Aij*j riuritfrmi. ieniv onimei tci 1'fit b 1~y ,wi

prov Ol' % A .el of r m io nre I u 111, i r pi flu, it-, tm~ '.4 .Ik 1.4' ir .

SW tdb~if! f0r F0rib(u , 1 i nit' app't. jIsi *htit mjiaiitjain ti, pt alIt' ' A,.1 ',I,11

*adre

p 80 CMU SEI-87-TR-26

T hir is an AR T tW(G whille paper arnd will ONlaoally be releasedl in November 1987 At the lmi. II
of *rI" rig thics clet raptco a complete copy was not available This paper is expa'eli I,-
be qujite I it, al abtxut the State of Ada compilers,

Ar, Ada Tasking Appix atior' in an Air [)efense System %o
,ri),rfh Anr,, Nj,c,ra(orlererk e or, A(ld TechnooQ(7 Pages 28 1' 0i 1- Army%

n"IrrnKia ali. f ie trrnw ommwarxd M~arch 1 98f
Keywords tA"., ;orwtjrreri y mod~xelti
Abotracl Summary lf i e,,ogninq the- target fra liring processes of an air defense systen) Irt

rlaisagri..- rfaiwj r5)4i5 an appropriate taskingq Sttri-ir The Ada tasking featUres of.'

hCAP, riti" tlif4al(Itif taOr, arid %iragI... thre~ad per ?ask apprcat hes to soiving a given prft
lemr, Ii' I" A'thert' Ar.. ac,,

9
Al OPturis; ."Allabie to the, designer a single task,..i4' fila'[a'rrt(rtuiIw neasps 5.foadoetakerrA.

1W,.. *1)1 Is,14 ,i
9 '

' "aef f'ate' jjn~ ther1Ol Ali per ratage arid o n tsk e f4_

'i't55 a *~ ~ .r'~ 9.stap' 'iiie(IWvn) q-, tohetxlb ciweniagae dasit'.a
194~ ~ ~ ~ ~~~~M tWWA 1() tw 9-,'- 9'i,5,9..i'~~.jc *hf b ' .r5p irfij i'lia.0

'.". 9...~ Aj , tow r

9.,. 1. k*/%Iw j , , . o w P fI ~i i rt

Keywords A' t ' 4. 4a '.. 1I.j 141.. .''.a'tg e .t ' 'I

Abstract Summary g '1.'.'"~~*.' 4 i .tl~ -go~.r, Ofoopef.-. 1).l .''a*

a ~ ~ ~ ~ ~ ~ ~ ~ ~ I- gx p4A 11 * ' a 9' '''.j; .5.'k.i' .I erryl tuse r0 iil,,! 9

I '. .9 I ' ' *g*'4 . '. 1, 1401 ,4,.~ 4 it 114 1 ff.*ija' tft ''.y T1(.' f. ' '

a' 4 a .*. *j,. ~ ~ ,9ip9rqx9.v 9tiii *.i4, ith1~t- , 9 ri , g , '. j"9.

9t4 *-0. P ,.. i .,,4 .Ail. '''Laqi' ,4 iit tk ,l t. V~ 1 * L' J

I1 1. %i Isf. W 41.w 11. , * i 9 , q.4 49'. r,v 1,14 I~ -~ '.

_41 A ji.oi tJirtt~t , '9.% rv9 t 9 .1,40 -% IWOVIVrn I. !*9 6i(10i 4 t 4X. V I l , 100.9,9' Ila 1,44 14

P999l.9.lJ 9.' ~~~ 9' I ''L *'~'4 "Okift I, s,9 i'''.- V Q1s!,0 t. lk rrf 04,,9 4, fS0 it

ii fit v9 *.' 1*- r, eba k'~ I *I' ;IIa. f,.~. ~ t9. 4,' i' *~9~9

K4 e yword 14es..I ex'it 'i i'" Ip -Pitxp. %A toriiwuk efKI

Abaltract Summary I t.* 14a-. POiVa,, t is9t*h'irtIrt'Lil' VIVIV'*01- ~'ai'A'- ' 'riO

CMU SEI-87-TR-26 81%

% l
U '~'*p\' .% .%''.- . ~9 .~ .- %

dures as individual instructions of a higher-level program Rex, an architecture for design-
ing real-time systems based on a programmable standard executive, has evolved from a
series of real-time systems in the aerospace industry

This is an interesting paper The approach allows prediction of system performance via
prototyping and simulation, reuse of software components, flexible use of multiprocessors,
and potential for automatic recovery from failures. A three-level view underlies Rex. appli-
cation, executive, and operating system The executive defines the interface between the
application and operating systems, thus allowing independent recontigurations within any
of th:)se two levels Unlike Thoth. iRMX 86. and VRTX operating systems, which can be
viewed as providing a virtual machine for the application program, Rex provides a virtual
machine for the system specification

Considerable detail is given for each component in each level The scheduler, dispatcher, and
resource allocator exist within the executive System services, configuration management.
and fault processing are grouped under the operating system The architecture offers
great potential for reuse of application software components through the use of the com-
ponents as user defined, high-level instructions

FJ, I.kr Theodore P and Riccardi Gregory A
ivrt ienhinq Ada E xceptions

ft I.o;otw.ire 42 51 September 1986
Keywords Ada tasking, storage management, exception
Abstract Summary: Can exceptions be implemented for Ada without imposing overhead on

normal execution? Yes as long as certain rules are followed
T ,ii is quite a good article concerning the problems with implementing Ada exception handling

tasking storage management, representing exceptions, raising exceptions, finding excep-
tion handlers methods for implementing handlers (map versus inline code), propagating
exceptions control structures for recovery, and code sharing

Simbe'ger Judy Ritter Philip and Wilson Jackson
'i, fital)atabase Management System An Ada Technology Prolect for the US Army
,c ,,i'r Annual National Conference on Ada TeChnology Pages 132 141 U S Army

rmniun.catirls [lectronics Command March 1986
Keywords Ada database design language
Abstract Summary: The Tactical Database Management System (TDMS) is a prototype of a

state of the art database management system being developed in Ada for an Army labora
fory responsible for developing testing and evaluating new hardware and software de
st';ried to meet tht information management needs of battlefield automated systems
T here are three alyor porions to the TD[BMS contract

* the database management system itself, supporting system maintenance
prograrns ard front end programs to provide a variety of ways the user may
access the database

* A testbed in which to run experiments

* A number of studies that enphasize areas of future research

T , paper presents an overview of TDBMS and then concentrates on two issues we have
faced in the development of TDBMS (1) using an Ada based program design language
(Pt)i) ad (2) selection of an Ada compiler

Itio, TDBMS is to be implemented on Sun workstations under UN'., VAx under VMS and
IBM PC under PC DOS written in Ada The article concentrates on high level requirements
ot the system Ada was chosen for implementation because of the portability require
ments while the Army mandates that new prolects represent their system design in an
Ada based PO e g T RW PDt I he following issues are raised concerning moving from
a design to code with Adi

82 CMU/SEI-87-TR-26

%p" ", I . , ' ." .' .' .* ." .' -" ,, •%," '% '% " ., - • € o. ° . o- A
" ". .' ..''.','..'.,'.. ,' .,. .. •',... ...' " ,',, .",,' : , .-,

°."

" Limited private in design could not be implemented in code.

e Storage allocation for aggregates had to be carefully considered.

" Variable length string capability needed. V

* A generic storage manager was needed to support (de)allocation of a variety
of data types.

Much discussion or having a validated compiler highlights that validation only covers the cor-
rectness aspect and the precluding of language proliferation; validation does not include
suitability, domain-specific, performance, and environment tools.

No specific compilers are mentioned, but compilation speeds of 150-600 lines per minute were
found. Cleaner, simpler code resulted from using the task scheduling strategy, but the
code was not portable. Storage allocation for dynamic tasks had to be reclaimed. Chapter
13 features (interface to non-Ada subprograms, unchecked conversion and deallocation)
were needed. Representation specifications would have been helpful. Environment tools
(symbolic debugger, library, and configuration management) assisted greatly. The authors
agree that the Ada environment is still immature but expect improvements by the end of
the decade.

111] Booch, Grady.
Solve Process-Control Problems with Ada's Special Capabilities,
In Saib and Fritz, Tutorial on the Ada Programming Language, Pages 137-145 IEEE, 1983.

Keywords: Ada, embedded systems, temperature monitor, object-oriented programming
Abstract/Summary: Embedded computer systems present difficult problems if designed using

most high-level programming languages But as a process-control example show, Ada is
adept at handling multitasking, real-time environments.

The paper highlights the features of Ada which provide the capability to develop embedded
system code parallel processing, real-time control, exception handling, and unique I/
control A step-by-step approach to developing the code for a temperature monitoring sys-
tem is given Object-oriented design approach is followed Hints are given as to how to
structure the Ada code.

112] Burton, Bruce and Broido, Michael
Development of an Ada Package Library
In Proceedings of the 4th Annual National Conference on Ada Technology. Pages 42-50

U S Army Communications-Electronics Command, Fort Monmouth, NJ. March. 1986
Keywords: library, reuse
Abstract/Summary: A usable prototype Ada package library has been developed and is LA.r

rently being evaluated for use in large software development efforts The library system is
comprised of an Ada-oriented design language used to facilitate the collection of reuse
information, a relational database to store reuse information, a set of reusable Ada compo-
nents and tools, and a set of guidelines governing the systems use The prototyping
exercise is discussed and the lessons learned are presented Our experiences in devel-
oping the prototype library and lessons learned from it have led to the definlion of a
comprehensive tool set to facilitate software reuse

[131 Conference on Ada Technology
Overview of Conference
In Fourth Annual National Conference on Ada Technology. U S Army Communications-

Electronics Command, March. 1986
Keywords: Ada, applications, research, methodology. secure operating systems, education

and training, support environment and development tools
Abstract/Summary: As a general rule, the conference proceedings has papers with mislead -,

ing abstracts, so it is necessary to look within the paper for an accurate understanding of

CMU/SEI87-TR-26 83 C-0i

the contents. The following papers are recommended reading Ada and real-time systems:
Ausnit, Dousette, Hood, Laird, Pepper, Perkins, Rodriguez, Selwood.

[14] Clapp, Russell M., Duchesneau, Louis, Volz, Richard A., Mudge, Trevor N., and Schultze,
Timothy.
Toward Real- Time Performance Benchmarks for Ada.
Technical Report RSD-TR-12-86, University of Michigan,
July, 1986.

Keywords: benchmarks, measurement ,
Abstract/Summary: This paper addresses the issue of real-time performance measurements

for the Ada programming language through the use of benchmarks. First, the Ada notion
of time is examined and a set of basic measurement techniques are developed. Then a
set of Ada language features believed to be important for real-time performance are
presented and specific measurement methods discussed. In addition, other important
time-related features which are not explicitly part of the language but are part of the run-
time system are also identified and measurement techniques developed. The measure-
ment techniques are applied to the language and runtime system features and the results
are presented.

The authors have developed a set of benchmarks (as opposed to a composite benchmark such
as Whetstone) that are designed to measure performance of particular Ada features. Their
measurement technique involves complex operations including: isolating the feature to be
measured within the source code; achieving measurement accuracy and repeatability: and
eliminating under!ying operating-system interference with time-slicing, daemons, and
paging. It is not obvious whether the authors entirely succeeded in eliminating these
effects Comparing timing figures across different architectures and operating systems
does not seem scientifically accurate Difficulties with timings are discussed and a math-
ematical description of accuracy given. Some estimates are crude.

It is concluded that the Ada CLOCK function should not be used in tests to determine o
S.operating-syslem overhead Instead, an implemenlation-independent subprogram should

be used that can read the system timer without invoking any variable time system func-
tions such as storage allocation Otherwise, CLOCK can be safely used Clock resolution
seemed to cause some problems

". Ada features tested are
* subprogram calls enlry/exit overhead, simple parameter passing, intra- and

inter-package calls, instantiation of generic code

* object allocation entering a scope, dynamic array creation, NEW allocation

* exceptions response and propagation time

task elaboration, activation and termination, entenng a block, NEW

* rendezvous time between a task and procedure

a clock evaluation overhead of call to and return from CLOCK

* time and duration evalualions. "+" and "-" functions of package CALENDAR

9 delay funcion and scheduling preemptive and fixed-interval scheduling strat-
egies

@ object deallocaion and garbage collection using NEW to enforce collection or
raise STORAGE ERROR if no collection

* interrupt response time
Task context switching and scheduling behavior concerning I/O requests seen to have been

overlooked

84 CMUISEIo87-TR-26

XS *.. S~ - J ' ~ d , ~ ~ .- * - *-. * .5.

q) Tests were run on several Ada compilers (VRTX, DEC VAX, Alsys) under UNIX and VMS. Com-
parison tables are given. All of the compilers were for time-sharing systems and not real-
time ones. The authors conclude that it is not safe to use an Ada compiler for real-time
applications without first examining it with performance evaluation tools. Time manage-
ment, scheduling, and memory management can have devastating ramifications.

[15] Dousette, Patricia J.
* A Communications Project in Ada.

In Fourth Annual National Conference on Ada Technology, Pages 13-21. U.S. Army
Communications-Electronics Command, March, 1986.

Keywords: communications, Ada, training
Abstract/Summary: The Communications Control System (CCS) is a front-end communi-

cations processor. It was one of the first mission-critical systems to be implemented using
the DOD developed language Ada. The CCS software development proved Ada tech-
nology to be practical for the following reasons:

* A large scale embedded software project, in excess of 45000 lines of Ada is
viable.

e A significant increase in programmer productivity was observed using Ada

. o The project pinpointed problems with existing Ada support tools and method-
ologies and emphasized the benefits to be gained by development of these
tools.

" The use of Ada-based Program Design Language as a design tool is both
feasible and desirable

In addition, information concerning the following areas of interest were obtained

* Ada programmer training issues were analyzed

o Ada runtime system problems. (i e. speed of execution and code generator
efficiency versus Ada implementation) were highlighted

The following paragraphs will present the CCS prolect history (i e how and why Ada ,a5
chosen) and the problems and successes that were realized because of its use

* A very early version of the TeleSoft Ada compiler was used for developing the sotlware for a
M68000 processor, except for the time-critical software which was still developed in as
sembly language The ease at which programmers learned Ada was directh, proportlona,
to their attitude in learning the language The shortcomings they faced were

* Lack of development supporl tools e g. symbolic debugger

o Size of compiled code which greatly exceeded estimates by a factor o! 3
compiler expansion ratio was 22 byles per Ada line compiler overhead ,as
2 5 compared to assembly code

* The inability of the compiler and operating system to support a project as

large as CCS fixes had to be made

* Language interlace to the peripheral processors too consKlerable time 1,,
develop and debug (especially without a debugger!

Ada proved not to be well suited for a top down desigr method sint- e
implementation is 'bottom up" this was partially due to lack Of separate -a
cility in compiler guidelines for code standards had to be ,rrnroved ardl
monitored

e Resource limilati,..ns of the Ada runtir e system had to b, improved

The conclusions seem to be

CMU/SEI-87-TR-26 85

*

' " - "" '" '" " """- -" '"- " '"-"• , ." "" " " ","- "' ,>,. ',"." ", ",-'.>,;..,-.>.''.'

* It took 2.5 years to develop 45,000 lines of Ada code and 11,000 lines of
assembly code using, on average, 16 people

" Excessive compiler overhead degraded performance of the system A more
optimized design alleviated some of the problem, but its obvious that signif-
icant compiler optimizat)ions are needed

Programmer productivity (lines of normalized code per day) was 2-3 times
greater than for other languages (Pascal, assembly)

~~Although not quantitatively measurable, it appeared that benefits were gained '
in readability, maintainability, and reliability by using Ada Z

[161 Downes, V.A and Godsack, SJ
Programming Embedded Systems with Ada. N
Prentice-Hall International Inc., 1982

Keywords: Ada, embedded system, paoient monitoring system

Abstract/Summary: This book discusses how to use Ada to program a medium-size, em-
bedded system It elaborates the history of the Ada language, the difficulties of developing
large-scale software for embedded systems, the features of Ada which are appropriate for
programming such systems and include a sample case study, a hospital patient monitoring I
system The book's intended audience is one not very familiar with Ada Although it was
wntten before the 1983 version of Ada, the age of the book is no problem, e.g,
TACTUAL DELTA is really T'SMALL However, it does ignore all the pragmas

The book shows how to model the problem domain with Ada concepts In particular, it consid-
ers types, expressions, subprograms, parallelism, packages, generics, low-level features,
visibility and program structure, and the building of data structures. Exercises are
presented in each chapter (along with answers)

3 rover V and Raleev S
Notes on the Ada Runtime Kit (ARK)
Technical Report 9074-7. SofTech,
Mai 1983

Keywords: Ada runtime tasking exception, memory
Abstract'Summary: The Ada language definition does not address many of the issues that

deal with the detailed runtime performance of Ada programs. These aspects, which have
heretofore been considered to be in the realm not of a language but of the underlying
operating system and of specific application code. now need to be addressed by Ada
implementors Most of these concerns arise in the implementation of the runtime support
library for an Ada language system Essentially, it appears that no single runtime environ-
menl would be satisfactory for every user Thus the implementor needs to offer a set of
opltions using which the programmer can tailor the environment for his particular needs. In
this study we identity some of the alternatives which an implementor might consider pro- -

viding
This set of notes assumes some knowledge of the ALS runtime system implementation. It

discusses memory. processor. and overlay management by answering specific questions:
* I no access type is declared, will the implementation still force some over-

head?

" What allocation strategy is used"

" What deallocation strategy is used"

* How can I find out when X percent of storage is exhausted?

" Is there one heapr or is a separate memory region reserved for each collec-
lion?

86 CMU/SEI-87-TR-26

• What paging strategy is used?

* What does "eligible for execution" mean? What does "sensibly" mean? (in
relation to task scheduling as defined in the LRM)

* How many levels of priority are supported?
"%

* How are tasks with the same priority scheduled?

o How are tasks with undefined priority treated?

* Is there any overhead associated with the use of priorities?

* Is there a tradeoff between task switching speed and any other parameter?

* Does a program using no tasks still incur any of the tasking overhead?

* Is distributed tasking supported?
The main issue is whether it's possible to have a runtime environment which is general enough

to provide the user with enough options for tailoring the Ada runtime environment to the
individual's needs. Such a customizing environment is called the Ada Runtime Kit (ARK)
The authors believe that ARK is possible, but there is no discussion about the cost of this
generalization in terms of space and speed that the customized runtime would incur. This .

paper asks questions which are answered by giving a general description of possible soiu- '

tions, followed by the solution that ALS implements. The authors seem to give quite a
comprehensive list of options. ARK was never implemented in ALS.

Modularity of the runtime is stressed since it aids providing options. But choosing how to divide
the modules is a difficult process. Answers discuss: selective linking; best-fit; first-fil. buddy
system for memory allocation; on-the-fly versus explicit garbage collection, storage
coalescing; fairness of scheduling; interrupt handling; nested interrupts; deadlock lime
slicing; agendas for scheduling same priority tasks; rendezvous; and activation servers -
distributed systems. The questions are taken from (Lomuto,83].

[18] Grover, Vinod.
Guidelines for a Minimal Ada Runtime Environment.
Technical Report ESD-TR-85-139, Electronic Systems Division, Hanscom Air Force Bast,
January, 1985.

Keywords: runtime system, memory management, tasking, faul tolerance inpuf o.,:-' ."
ciency

Abstract/Summary: A major goal of the JAMPS Ada software acquisnion is to cie.
portable and reusable modules for JINTACCS message preparation ha'i:
easily be used in many different types of military systems This goal ma '.....

* and use of the Ada runtime environment, as dependence on features L ".
ronment (either for functionality or performance) limits porlablity to - ' . 4
providing the same features. This results in the concept of a rnm, ,,. ..

lures necessary to support JAMPS; this minimal set as ,de"'-, .r.
applicable to other real-time systems

This is a worthwhile paper to read since i covers mos! aspec-'',..
author raises issues that need to be considered wh , des ,.
be implemented in Ada He makes it clear that it s rk, , '

support without understanding the design of toi i, ', .
time system.

Major concerns regarding Ada include lack of , d,"', -
lures (e g , task scheduling strategy wht-i at .-' ,*'
affect runtime behavior on dileren .

calling depth Also some app,, ', ., .
tests can be destrucive to r ii, .i r i '

CMU SEI-87-TR-26

Al IEGIE-HELLON UNJY PITTSBMGNS PA SOFTNMtf ENGIMEERIN
INST N N WEIDEMNA ET AL. DEC 97 CN/SEI-8?-Tt-26

'KLSj~F0EOT-719 I2-5CM / 25 IL

2-8 W 'dNS 'J ~ V

1*0"

IEEE'- 3-15 19*

- ~1- III

- ~ l2-0v25 140

1111

%11 li

% % % %

% %.

% %

AN.%;vsq

The following runtime environment issues are discussed:
* memory management: selective linking; free storage management, structur-

ing, and monitoring; target memory control; addressing limitations with
packages, subprograms, and tasks

" processor management: number of tasks; task priorities and dispatching

" overlays

" fault tolerance: watchdog timers, audit trails, fault and deadlock detection

" security: memory management

• input/output: file system, asynchronous I/O, device support, terminal and
screen I/O

e pragmas: INLINE EXPANSION, INTERFACE, MEMORYSIZE, SUPPRESS,
SYSTEMNAME, representation clauses

Reusability is interpreted to mean portable software.

[19] Grover, Vinod and Vanderminden, Cynthia.
Designing Control Systems in Ada.
Technical Report TP 216, SofTech,
1985.

Keywords: synchronous, asynchronous, tasking
Abstract/Summary: This paper illustrates a technique for programming control systems using

the tasking constructs of Ada. In particular, the concepts of synchronous and
asynchronous input drivers are discussed, followed by a discussion on how a control loop
can be designed to handle the two forms of input. Finally, the issues for extending this
technique to the problem of real-time control is discussed for limited cases.

This is a handy, short note highlighting the difference between synchronous (urgent,
preemptive) and asynchronous (non-critical, synchronized) events, the need of real-time
systems for both, and various ways of implementing them using Ada (policy of ACCEPT, *

fair scheduling over tasks, protocol on data buffer). Response time, fairness, and absence
of deadlock are the criteria for determining the effectiveness of the solution.

[20] Hindin, Harvey J. and Rauch-Hindin, Wendy B.
Real-Time Systems.
Electronic Design3l (1):288-318, January, 1983.

Keywords: real-time, performance, concurrency, operating systems, Unix, languages, Ada
Abstract/Summary: The most demanding computer application, real-time systems call for

careful considerations of the software options.
This is a good, high-level overview of the problems of real-time systems. There is little gLi.'nce

available for choosing software for such a system. Once the fundamental software design
has been chosen, it's necessary to consider the operating system and the language.
Real-time factors: response time, data movement rate, interrupt latency, context switch-
ing, speed of computation and access to mass storage, reliability, restart, and fault
recovery. Real-time systems have a high data rate (e.g., 1 MHz) and a fast response time(e.g., 1 microsec).

Operating systems VRTX and several flavors of UNIX are exemplified for real-time customi-
zation. Concurrency primitives of Ada and HAUS are compared. The designer of HAL/S

1% believes that HAL is a better language for real-time software since it isn't as general as
Ada.

Ib

88 CMU/SEI-87-TR-26

1.0

[21] Hood, Philip and Grover, Vinod.
Designing Real Time Systems in Ada.
Technical Report DAAB07-85-C-K506, US Army Communication and Electronics Command,
January, 1986.,,N-

Keywords: Ada, real-time, time, cyclic and data-driven executive, runtime, performance
metrics, fault tolerance

Abstract/Summary: Real-time software differs from other kinds of software in the sense that it
must interact with external events. It must detect the occurrence of certain events as soon
as they happen, and exercise control over external processes in a timely fashion. Real-
time software must be cheap to produce and must be extremely reliable, even more so
than other kinds of software. None of the existing approaches for real-time software design
have been able to satisfy all of these requirements. In this report we evaluate the role of
Ada for this purpose and find that it too falls short. However Ada, unlike other approaches
can make contributions towards reducing the cost and increasing the reliability of real-time
software. This report examines ideas and methods to be used in conjunction with Ada to
satisfy the rest of the real-time requirements.

This rather long report gives a detailed description of cyclic (time-slice, deterministic) and data-
driven (event- and priority-driven, non-deterministic) executives with a comparison of the
two concluding that an integrated executive would be the best solution for designing real-
time systems. This transitional approach would combine the development and mainte-
nance advantages of the data-driven approach with the runtime advantages of a cyclic
executive.

Two case studies (radar system, producer/consumer problem) are presented using both tech-
niques. Timing and mode (e.g., reconfiguration) problems for real-time systems are
thoroughly discussed. Comparisons of various specification design models (queuing, timed
Petri Net, abstract process networks, Markov chain, finite state automata, computation
structures) for describing timing aspects conclude that an integrated technique (e.g., queu-
ing networks with process level models for abstract process networks) is needed. This is
still a research issue. Tabular results highlight analyses, and Ada is used as the descrip-
tion language for examples.

Some of the inadequate features of Ada for real-time software are presented: entry calls, 0%

accept and abort statements, task creation and termination, storage allocation. Compiler
optimizations are indicated noted (Habermann-Nassi for minimizing context switch,
Hifinger's monitor clusters for grouping tasks, Rajeev's rendezvous overhead reduction,
Greene's fast interrupts). There is much useful information here.

[22] Knobe, Bruce. %
Flig;lt Languages: Ada vs HALlS,
In Saib and Fritz, Tutorial on the Ada Programming Language, Pages 476-481. IEEE, 1980. N.

Keywords: Ada, HALS I-'

Abstract/Summary: HALS is a language designed and implemented in the early 1970's to
support the development of flight software for the Space Shuttle. It has subsequently been
adopted as a NASA standard language for flight applications. Ada is a language designed
for the DoD's Advanced Research Projects Agency. It is hoped that Ada will eventually
become the DoD standard language for embedded software. Both languages provide ex-
cellent support for the the development of typical aerospace applications. We consider
how the differences in perspective, special purpose vs general purpose, and the 10-year
difference in time period has affected the language designs.

This paper touches on the significant real-time issues that the languages address. The style of
writing and lack of criticism indicates a predisposition for HALS; nevertheless, we paper . .,

raises some interesting differences, particularly concerning philosophy of programming.
HALS specifically addresses the problems inherent in writing flight programs. Ada provides

more general concepts and "defines a language aesthetic." Comparisons are made con- A

ceming:

CMU/SEI-87-TR-26 89

%, % p % %

e lexical considerations

e built-in types: HAL/S has some extra S

* programmer-defined types: HAL/S is limited

e data abstraction

a overloading: claims Ada is too complex

* storage allocation: all requirements are known at load time for HAL/S, rather
than dynamically as in Ada; hence designers can build more simple tools for
HAL/S

" expressions

" control flow

" procedures

* modules and separate compilation: HALS has a common pool whereas Ada
presents a strong hierarchical relationship

" scheduling: Ada's DELAY is very general whereas HAL/S' SCHEDULE allows
programmer to easily state a common scheduling strategy

" synchronization Il

" interprocess communication: HALS has Boolean signals and critical regions

" time

" exceptions

" macros iw
w

* input/output: neither provide good facilities for flight software

* built-in libraries

[23] Laird, James D., Burton, Bruce A., Koppes, Mary R.
Implementation of an Ada Real-Time Executive - A Case Study.
In Fourth Annual National Conference on Ada Technology, Pages 114-124. U.S. Army

Communications-Electronics Command, March, 1986.
Keywords: real-time embedded computer system, executive, runtime system, scheduling, effi-

ciency, Ada
Abstract/Summary: Current Ada language implementations and runtime environments are

immature, unproven and are a key risk area for real-time embedded computer systems
(ECS). This study provides a test-case environment in which the concerns of the real-time,
ECS community are addressed. A priority driven executive is selected to be implemented
in the Ada programming language. The model selected is representative of real-time ex-
ecutives tailored for embedded systems used in missile, spacecraft, and avionics applica-
tions. An Ada-based design methodology is utilized, and two designs are considered. The
first of these designs requires the use of vendor supplied runtime and tasking support. An
alternative high-level design is also considered for an implementation requiring no vendor
supplied runtime or tasking support. The former approach is carried through to implemen-
tation.

This interesting paper discusses three approaches to runtime systems: pseudo-executive, bare
machine approach, and a futuristic, configurable runtie system. Ideally the last option
would be the best.

It is claimed that a storage penalty of 5% per program unit for minimal exception handling

90 CMU/SEI-87-TR-26

Ze-

capability and a 30-500 microsecond CPU overhead for invoking an exception handler are
acceptable within an embedded system. Overhead of 12 milliseconds (e.g., one tenth of a
real-time application's frame time, 40-100 milliseconds) for a rendezvous is too high. Tradi-
tional garbage collection methods are not adequate for embedded systems. Programming
techniques can alleviate some overheads: make task processing dependent upon a ren-
dezvous that is placed inside a loop; optimize ACCEPT rendezvous by placing all proc-
essing after ACCEPT block thereby having an almost "asynchronous" rendezvous. ." *.

An all-Ada executive isn't really possible since about 2% of an Ada runtime system will need to
be written in assembly code. Basic context switching times on the order of twenty
microseconds and general code expansion ratios on the order of 4-6 are acceptable. Fu-
ture hardware architectures will help with performance. Ada lacks: facility to allow dynamic
"disconnection" and "connection" to interrupts without the termination or creation of a task;
dynamic task prioritization; precision in the specification of exact delays; ability to time-out
during initiated rendezvous. A clear, concise design method for real-time embedded Ada
applications is needed. Authors used Object-Oriented Design and DARTS but no evalu-
ation is given.

[24] Lomuto, Nico.
How Fast Is X In Ada? or Does Ada Support X?.
Technical Report 9074-1, SofTech,
December, 1982.

Keywords: system designer V
Abstract/Summary: In approaching Ada, real-time system designers are understandably un-

comfortable with the notion that certain functions, which traditionally were their responsi-
bility, are now taken care of by "the implementation". What makes the discomfort partic-
ularly acute is the fuzziness of the demarcation between the implementation and the
user's responsibilities, the uncertainty about the extent to which realistic implementations
are expected to support various concepts, and the uncertainty about expected perfor-
mance characteristics of the implementation. This brief note is an attempt to establish a
frame of reference for the perplexed Ada user.

This report makes the point that system designers must be able to determine the characteristics
of the final system before they can pick an Ada product off the shelf. Once they know
what they want, there is enough customization available to provide for the needs. Since
there are so many factors involved in determining "how fast is x," it is pointless for a
designer to choose a product based on this one criteria. Also, now that Ada provides
many more functions similar to an operating system the designer appears to have less
control over such at the design stage. But the designers actually have more choices since
they can ask "how much will it cost to meet the performance requirements using..."

[25] Lomuto, Nico.
Options in Ada Implementations.
Technical Report 9074-4, SofTech,
April, 1983.

Keywords: Ada, storage, tasking, overlay, fault tolerance, security, hardware, pragmas
Abstract/Summary:
A language standard cannot define the implementation completely. Performance character-

istics are typically left underfined, and so are some (as few as possible) aspects of the S
semantics. For Ada features related to embedded systems, the demarcation between
performance an semantics is somewhat fuzzy. Furthermore, certain implementation
choices may make an implementation unusable for some applications. The obvious course
for the implementor is to try to identify an optimal alternative among those permitted by the
language; alternatively, an implementation may offer options (selectable, for example, via . ;
appropriate pragmas), so that a user can "customize" the implementation to a particular
set of needs. The second approach seems reasonable (and desirable) for those

'!N9

CMU/SEI-87-TR-26 91
v',-.,

'% *

"executive" functions embedded in the runtime system that an implementation must
supply. This report presents a survey of such implementation alternatives, with a prelimi- -,

nary analysis.
This report contains a wealth of information. It represents, in effect, a buyer's guide to an Adacompiler/runtime system since it poses questions and suggests possible solutions. The ,'

spectrum of questions is too large to present here (refer to [Grover 83] for samples; that
report takes its questions from this one). Questions cover: memory, processor and overlay
management; fault tolerance; security; pragmas; inputloutput; timing; scheduling; distri-
buted environment; hardware dependencies; optimizations; predefined packages; libraryfacilities.

The conclusion is that the notion of an Ada runtime system (which has already made consid-erable implementation choices) should be replaced by that of an Ada Runtime Kit (ARK). '
This would consist of a structure, within which different options may be exercised by re- '-
placing selected modules. Although no off-the-sheff implementation should attempt to pro-",

vide all conceivable options, the ARK should be defined so that such options may be
developed if necessary. The report does not cover the binding time of these options, e.g.,
at runtime, or compile time, or load module generation time etc.

[26] Loveman, David B.
Tutorial on Ada Exceptions,
In Saib and Fritz, Tutorial on the Ada Programming Language, Pages 408-431. IEEE, 1983.

Keywords: Ada exceptions, domain and range errors
Abstract/Summary: This tutorial describes Ada's facilities for dealing with exceptional situa-

tions, such as errors, and provides examples of the use of these facilities. "An exception is
an event that causes suspension of normal program operation. Drawing attention to the
event is called raising the exception. Executing some actions, in response to the occur-
rence of an exception, is called handling the exception." [LRM] Chapter 11.

This is a handy, concise tutorial describing the concept of exceptions and those provided by
Ada (albeit the 1980 version of Ada). Exceptions can be classified as follows:

" escape exceptions, which require termination of the operation raising the ex-
ception

" notify exceptions, which forbid termination of the operation raising the excep-
tion and require its resumption after the handler has completed its actions;andt

" signal exceptions, which permit the operation raising the exception to be ei-
ther terminated or resumed at the handler's discretion

Ada's exceptions are of the escape category since they serve only for error situations and as
terminating conditions. Errors can be subdivided into domain and range errors, where the
former has an operation that fails an input assertion and the latter has one that fails the
output assertion. Ada provides mechanisms to declare, raise, reraise, handle user-defined
or standard or anonymous exceptions, and propagate and suppress exceptions. Program-
ming style can significantly affect the reliability of an Ada program, particularly regarding
exceptions. Standard exceptions should be considered as errors and not used in routine
programming. One must be careful in order to fully encapsulate abstract data types. Ada
exceptions allow considerable freedom and may be used in ways which affect reliability of
code:

* Exceptions can be used as a "normal" control structure rather than just for
error situations.

* An exception can be one of the potential external effects of a procedure or .'

package (via propagation), and there is no language-mandated requirement
that it be documented as such.

92 CMU/SEI-87-TR.26

'2,

.4,¢

An exception may be propagated beyond the scope of its name and thereby
handled only by means of the catch-all, "others"; propagation is based on the
dynamic call chain.,,,

Hints are given for alleviating potential problems.

[27] Merdes, Daniel W. and Janota, Claus P. 'V-.

Environment Simulation for Testing of Ada Embedded Software.
Technical Report , Applied Research Lab, Pennsylvania State University,
Aug, 1986.

Keywords: SIMSCRIPT, simulation, testing, embedded systems
Abstract/Summary: Testing and debugging of embedded software in actual hardware is ex-

pensive and time consuming and careful testing prior to field trials is normally done to the
extent feasible. But embedded software has traditionally been written in assembly lan-
guages targeted to specific hardware or in special-purpose higher-level languages,
hampering efforts at realistic environment simulation for laboratory testing. While compo- S
nent algorithms can be coded in SIMSCRIPT 11.5 or FORTRAN for testing under
SIMSCRIPT 11.5 and then re-coded in a language appropriate to the hardware, the
reliability of the actual code of interest is necessarily suspect and additional time-
consuming testing of the embedded software is required.

The advent of Ada, the DoD standard language for coding of embedded software, presents the
opportunity to utilize SIMSCRIPT 11.5's powerful facilities to simulate the operational envi-
ronment in the laboratory and thoroughly test the code that will ultimately be compiled to
run in actual hardware. This talk will describe how an Ada package for target state estima- %
tion was tested in an environment simulated on a Data General MV-100000 using the
DG/Rolm-Ada interface facility of the new Data General implementation of SIMSCRIPT
11.5. Further testing was done using routines developed by the authors to enable PC- V .
SIMSCRIPT 11.5 to drive the same Ada package running on a separate personal computer.
Interfacing between Ada and SIMSCRIPT 11.5 was achieved via routines that "pass
arguments" through the serial communications ports of the two interconnected personal
computers.

This paper does not discuss any features of Ada but rather the hardware environment for
testing (that is, simulating) some embedded software. Models for testing embedded sys-
tems are:

" The traditional model - develop and test algorithm concepts using a high-level
language on a mainframe; implement those algorithms in assembly code to
be run on target microprocessor.

" The preferred model - develop embedded software on host and thoroughly
test and debug that code with the aid of a comprehensive environment simu-
lation model; cross-compile the tested code for the target.

The problem with the traditional approach is that not all the situations could be tested since the :%

algorithms in the high-level language had to be a subset of the final ones.
Environment simulation is recommended by the authors. The need for Ada-to-other-language

interface is highlighted to aid simulations. The authors use an 80-character message .-1
packet to provide the Ada-SIMSCRIPT (a discrete-event simulation language) interface.
The application to be tested is a Pseudolinear Tracker, and the environment model con-
sists of: a navigator, initializer, coordinate-updater, observation generator, SIMSCRIPT .
support utilities, an inter-process communication interface, and the PLIF-tracker. A working
configuration consisted of the IBM-PC running under PC-SIMSCRIPT connected by
telephone lines to the DG MV-10000 running under AOSNS. The second configuration
was two PCs connected. An hypothesized scenario is to have a microprocessor running
embedded code and a supervisor processor to simulate the algorithm. The authors
couldn't test this scenario due to unavailability of an Ada cross-compiler to a bare target
processor.

CMU/SEI-87-TR-26 93 0

'S S - .. ~ 5 %~'I,% ~ , 5, 0

The authors found problems with the MV-PC interconnection resulting in loss of data. Simula-
tions typically took about three times as long as the simulated length of the modeled '1
scenario, most likely due to 300-baud data rate and artificial delays between message
exchanges. The interface between the environment model and application being tested
can itself be made into an embedded system, thus allowing a more generalized simulation
scenario for concurrent processes. The current interface makes no provision to allow simu-
lation time to advance while the embedded tracker is engaged in one of its computational %
tasks.

[28] NAVSEA.
Ada Runtime Support Environment Requirements Analysis Study.Technical Report 0967-LP-598-9770, U.S. Navy, Naval Sea Systems Command,
August, 1983.

Abstract/Summary: This specification presents the functional requirements for an Ada run-
time support environment (RSE). Section 3 of the document discusses in detail those

-functional demands placed on the RSE by the language definition. Since the Ada defini-
tion does not prescribe any particular implementation for the requirements, Section 4 has
been included as an adjunct to the main focus of the document to suggest possible par-
titioning strategies in the architecture of an Ada RSE.

[29] Park, J.L. and Kirton, P.A.
A Processor Monitoring Instrument for Real Time Stored Program Controlled Systems.
In Conference on Microprocessor Systems, Melbourne, Australia, November, 1979.

Abstract/Summary: A microprocessor-based instrument is described for monitoring the perfor-
mance of a processor in a stored program controlled (SPC) system. Details are given of
the hardware and software design and examples of the instrument's application to SPC
telephone exchanges are presented. This is of interest to low-level testers of host-target
systems.

[30] Pepper, W.S. IV.

An Experimental Utilization of Ada in Real-Time Interactive Avionics Communication Application. ode

In Fourth Annual National Conference on Ada Technology, Pages 8-12. March, 1986.
Keywords: device driver, scheduling, Ada
Abstract/Summary: The application of high-order language (HOL) to real-time avionics ap-

plications has been fraught with assembly-language subroutines and sundry workarounds J
to increase throughput. In order to ensure that Ada would in fact alleviate these concerns,
work was undertaken to develop an interface between a BMAC advanced technology
avionics processor and a touch-sensitive Integrated Control Display Unit via ARINC-429
and MIL-Standard 1553B protocol buses utilizing one of the available Ada compilers.
These two protocols are the most widely utilized communication protocols for general avia-
tion and military avionics applications.

Some aspects of Ada required the coding of workarounds at the executive and bus driver level.
These were costly in both time and space. It is important to note the potential effects of
language limitations prior to coding since these affect program design. Strong typing led
to inelegant algorithms. Lack of static access types meant all pointers had to be created
at runtime, causing inefficient operations and redesign of algorithms. Unchecked type
conversion was needed. Timing of parameter passing showed that the compiler gener-
ated the good code. Reliable and quick response is more important in an embedded
system than is flexibility of the executive. The author designed his own scheduler and
"runtime" system on top of Ada runtime system due to slow task context switch. A good
working knowledge of the compiler's runtime support was necessary. Fast interrupts were
supported to avoid task context switch delays. (A procedure call took place when an
interrupt occurred instead of a rendezvous.) All tasks were implemented as procedures sothat cyclic scheduling could be used to avoid overheads. General resuts: device drivers

94 CMU/SEI.87-TR-26

.-

, ''..''. ''2 '. "., "- -" .,".-. "'..-".-". "- .-". " -". -. -. .,-., .. -- .- ...

can be written entirely in Ada, as can real-time aircraft interfaces; proprietary information
regarding usage of task types.

[31] Perkins, Michael T. and Bolger, Joe E.
The Army's MAFIS command and control.
In Fourth Annual National Conference on Ada Technology, Pages 22-27. U.S. Army

Communications-Electronics Command, March, 1986.
Keywords: Ada, design, data-flow diagrams
Abstract/Summary: The Command & Control Subsystem of MAFIS is designed to monitor

and control military doctrine and equipment testing exercises. The Command & Control is.,-,
a distributed processing system that controls a communications network for the collection ."

of data, processes applications (such as simulations and database management), and
supports a user interface and graphics display. The Command & Control Subsystem is
being designed and implemented in Ada. A pilot portion of the system was tested at the
end of FY85. This paper describes the requirements, development methodology, and im-
plementation.

The authors provide much information about nature of the system rather than a detailed anal-
ysis of any problems found with the methods used. The implementation will be on Data
General hardware, but there is no indication of which Ada compiler or tool set will be used.
Structured design techniques and Ada pseudo-code were used for software design. The
developers feel that using Ada early in the design is rewarding in that reusable and exten-
sible tools can be built. Modularity, interface specifications, multitasking and exception 0
handling are helpful features. Developers found that compiler size had not be taken into
account when hardware requirements were established.

[321 Rodriguez, T. and Griffin, L.
An Ada Tracker - Experiences and Lessons Learned.
In Fourth Annual National Conference on Ada Technology, Pages 1-7. U.S. Army

Communications-Electronics Command, March, 1986.
Keywords: Embedded computer systems, real-time, tracker, Ada, prototype, tools
Abstract/Summary: Although the Ada language was designed for use in embedded computer

systems (ECS), a relatively small amount of work has been done with Ada in embedded,
real-time environments. The goal of this project was to determine the amount of work and
the types of problems that would be encountered using Ada for CS. The redesign and
coding in Ada of a small subset of a target tracker program that exists in 68000 assembly
language and runs on a custom built, 68000 system was used as the medium for obtaining
this information. From this project it was concluded that it is possible to use Ada for
embedded computer systems, although the current lack of maturity in Ada tools and com-
pilers for real-time ECS work discourages it for immediate use in large-scale ECS projects.

Valuable lessons were learned: tailored runtime was needed; detailed knowledge of code gen-
erated by the compiler was needed since it affected design, as was knowledge of tool kit.
Minimum tools in ECS should be: compiler, source, and target-level debugger, dis-
assembler; compiler that supports LRM Chapter 13; quantitative information on size and -.

characteristics of runtime kernel, amount of code generated for each Ada construct, and
execution speed of the constructs.

[33] Ruane, M.F., Cheikes, B.A., and Galia, J.H.
Ada Run Time Environment Characterization for JAMPS.
Technical Report MTR-9614, MITRE,
September, 1985.

Keywords: Ada, runtime taxonomy, JAMPS
Abstract/Summary: This report describes the interim results of efforts to ascertain whether

the TeleSoft Ada runtime environment for the MC68000 system will be adequate for
JAMPS software development. A series of empirical runtime environment test programs

39,.5

CMU/SEI-87-TR-26 95
0

was developed. Due to the unavailability of a fully validated TeleSoft MC68000 Ada com- OP

plier, the tests were exercised using the Rolm is the pagingADE. When an appropriate--
TeleSoft Ada compiler for the MC68000 becomes available, the test routines described,
herein will be rerun to determine the feasibility of reimplementing JAMPS in Ada. Avail- .
able TeleSoft documentation was reviewed and compared to a taxonomy of JAMPS run-
time environment questions. ,

This document presents some noteworthy global issues regarding Ada compilers: "

" The characteristics of Ada runtime environments, being outside the scope of "
the LRM, are determined by compiler designers.

,.

" It is encumbent upon the program manager to select his runtime environment ,,
with care. ,

" Although Appendix F to the LRM does require compiler designers to make ,,
public certain types of information about implementation-dependent charac-
teristics of their systems, this required list of performance criteria is far from

complete.

" It is more prudent to conduct test measurements to ascertain the limitations of
Ada runtime environe ahead ome than it is to learn these restrictions
the hard way during an acquisition program.

The JAMPS program has considerable emphasis on portability. It requires specialized run-
time environment capabilities beyond those dictated by the language standard.

The taxonomy consists of:

" memory management

" task management,'
subprogram management pt

.%

" input/output management tqo
file management ood

declarations and types tlei

" program organization/libraries mi

" initializationtermination
optimizationnd

" performance measurements

" exception handling
" command language

s documentation

• distributed systems

The report presents questions pertinent to each category of the taxonomy and shows all the
tests (written in Ada) which attempt to answer these. Each question has an evaluation of
its importance, with a measure of test suitability and an indication of whether the question

has been addressed by empirical tests. The tests are categorized as listing, feasibility,
stress, and statistical testing. Unfortunately, tests only exist for about 20% of questions
which are raised.

96 CMU/SEI-87-TR-26

*Z!

CC V.P

[34] Selwood, Mel.
Practical Experiences of the Ada Language for Real-time Embedded Systems Development for

the Defense-Related Market.
In Fourth Annual National Conference on Ada Technology, Pages 125-131. U.S. Army

Communications-Electronics Command, March, 1986.
Abstract/Summary: This paper describes some of the experiences gained to-date from an Ada

research program, undertaken within the Plessey Company in the U.K., by the author and -
his team. This program is investigating the cost-effective and beneficial introduction of the
Ada language for Defense-related (mostly real-time) software applications. Particular em-
phasis is placed upon minimizing the risks and maximizing the benefits for large and/or
embedded microprocessor-based systems. Within the context of this largely practical work
program, the paper identities a number of key concerns within the team (and it is sug-
gested within the industry at large) in making the transition to Ada. Also, some suggestions
for improving the application of current Ada compilers and tools is provided to the vendors
of those products.

The paper highlights that (since coding is generally 10% of software development) the real
value of Ada will come not from the direct characteristics of the language itself but from its
influence upon the software engineering methods employed. The group is examining the
ramifications of introducing the language (e.g., time-frame, life cycle, project
management). The focus is on three applications: a digital telephone exchange, a sonar
system, and an engine monitoring system. Implementations are for VAX, IBM PC/AT,
Motorola 68000, and Intel 80286 and 8086 targets. The strategy is to reimplement existing
applications using Ada on the VAX and retarget to the microprocessors. Ada compilers ,.

used were: TeleSoft, Karlsruhe, and DEC. They will also use VRTX'VADS as part of their
compiler evaluation process. DEC Ada had the most impressive compilation time. The
largest implementation has been 25,000 lines of Ada. Six issues were raised: library
management, different compiler recompilation, robustness of compiler re implementation
constraints, machine resources required, speed of compilation, and operating system run-
time interference. Unfortunately, no detailed discussion is given concerning these. The
group was satisfied with DEC Ada performance since it matched that of Coral and Pascal. •"
Work is ongoing, with about half of the retargeting to microprocessors completed.

Design methods: SADT, Mascot, LSDM/SSADM, and object-oriented approaches are being
considered. Problems mentioned: choice of packaging; cleared problems; strong typing
led to awkward data processing, with and use combined were error-prone; mapping of
design primitives into Ada ones was not one-to-one due to semantic differences.

It is suggested that compilers should be able to assist in program testing. Compiler vendors
generally do not provide adequate information regarding runtime support, such as: func-
tionality, size, performance, and runtime interface to embedded hardware.

The group is concerned that, even with validated compilers, there is much to be done before
Ada can really be put to effective use for embedded microprocessor applications, but they
are optimistic. Too much emphasis has been put on validation rather than providing auseful support system. DEC Ada stood out as the most impressive environment.

[35] Cornhill, D. and Sha, L.
Priority Inversion in Ada, or What Should Be the Priority of an Ada Server Task.
Technical Report , Computer Science Dept., Carnegie Mellon University,
September, 1987. 0
To appear in Ada Letters.

Keywords: Ada, priority
Abstract/Summary: What should be the priority of an Ada server task? Suppose that the

highest priority task Ti is calling the entry of a server task. However, the server is cur-
rently serving a low-priority task T2. We would expect that, being the highest priority task,
T1 should wait no longer than the time required for T2 to finish. However, this need not be
true in Ada. The rendezvous between the server and task T2 is executed at max (server's

CMU/SEI-87-TR-26 97

0~~" li .e

priority, T2's priority) which may be low. Thus, the server can be preempted by an inde- -

pendent medium priority task, say T3. Only when T3 and any other medium priority tasks
that arrive finally finish can the server resume. Only then can task TI receive its service;
however, it is impossible to predict how long this wait might be. In summary, task T1 is
effectively preempted by task T3 which is a priority inversion. One might suggest giving the-%
server a very high priority. In this case, when a low-priority task calls the server, it can
effectively block a medium priority independent task because of the high priority of the
server. In any event, the priority inversion problem is intrinsic to the Ada priority and task
definitions. Fortunately, there are protocols to correct this problem. For example, a solution
for simple servers is as follows:

1. The FIFO queue on the entry is replaced with a priority queue.
2. A (server) task can select the highest priority calls..,"

3. Priority inheritance is performed at entry call time.

Ore simple priority inheritance scheme is the following. The current rendezvous should execute
at the priority level of the highest priority task at the entry queues. There are more
elaborate inheritance schemes which can minimize worst case blocking time in nested
rendezvous and prevent the formation of deadlocks. When the priority inversion problem is
corrected, Ada tasking timing behavior can be analyzed and thus made predictable. This is
important to critical real-time applications. Moreover, when Ada tasking is free of priority
inversions, one can schedule Ada tasks using the sound scheduling algorithms and thurs
construct a high performance hard real-time system.

[36] Sonicraft.
Sonicraft Experience with Ada in Weapons Systems.
Technical Report , Sonicraft,
1986.

Keywords: Ada, compiler
Abstract/Summary: This is a short note highlighting a small company's experience with devel-

oping an Ada compiler and producing one of the first Ada Program Design Language
(PDL) C-5 specifications. Ada environment issues include:

* Task manager: resource limitations of microprocessors made it necessary to
restrict types of interrupts to make the task stack allocation smaller, find ways
to cut interrupt and rendezvous critical times, and use standard semaphore
versus a linked list giving rendezvous request status. In time- and space-
critical routines, such as task dispatcher and critical regions, 8086 assembly
code was used. One problem area was finding the best way to handle an
operator-initiated mode change.
Interrupts: time and space requirements needed to be reduced; non-maskable
interrupts were problematic.

Input/output: only low-level I/O was needed; addressing problems with limited
address space.

* Dynamic storage: non-contiguous memory creates problems with garbage
collection; use of dynamic storage (NEW) was severely restricted.

• Diagnostics: during debugging, it was necessary to trace back between tasks
e.g., during rendezvous; debugger was ineffective with compiler-optimized
code.

* Sizing: read-only memory presented problems for dynamic memory require-
ments of tasking, original estimates of 15K for runtime were completely inade-
quate => 80K was the final figure, approximately only 200K bytes of PROM
was available on the microprocessor.

98 CMU/SEI-87-TR-26

The runtime system and Ada compiler had to be optimized and the runtime library was linked in
selectively. With the Ada compiler optimized to produce about 10 bytes per line of code, -
the application met the memory requirements.

[37] Wichmann. Brian A.
Is Ada Too Big? A Designer Answers the Critics.
CACM27(2):98-103, February, 1984.

Keywords: Ada
Abstract/Summary: Many have criticized the DoD's new computer language, Ada, saying it is

too large, too complicated, or too difficult to use. Are they right? And are there some
simplifications that could be made to Ada without destroying its usefulness?

This is a short paper written in point-form answering several questions. It is very positive in its
summation of Ada, which is basically that the benefits of the language far outweigh its
complexity of implementation. There are 13 minor questions c.-ncerning "is small
beautiful?" Some interesting issues come out in the following:

* Changes that would be disastrous for Ada: exceptions, generics, tasking, in-
itialization of variables in a declarative part, default initial values for types,
user overloading of operations, limited private types in packages, restriction of
generic parameters to names only. %

*Changes that are possible but of questionable value: derived types, fixed
point, more than a single exception, number declarations, the binary notation
definition of real types, positional aggregates, logical operators over Boolean
arrays, relational operators over discrete arrays, short circuit expressions,
reverse loops, blocks, named parameters, default parameter values,
machine-code insertions, separate compilation for subprograms, separate -4,

compilation for subunits.

o Changes that are practical and worthwhile: unnamed array types, when con-
ditions in exit statements, goto statements, entry families.

[38] Wirth, Niklaus.
Toward a Discipline of Real-Time Programming.
Communications of the ACM2O(8), August, 1977.

Keywords: Multiprogramming, real-time programming, process synchronization, processor
sharing, program validation, Modula

Abstract/Summary: Programming is divided into three major categories with increasing com-
plexity of reasoning in program validation: sequential programming, multiprogramming,
and real-time programming. By adhering to a strict programming discipline and by using a
suitable high-level language molded after this discipline, the complexity of reasoning about
concurrency and execution time constraints may be drastically reduced. This may be the
only practical way to make real-time systems analytically verifiable and ultimately reliable.
A possible discipline is outlined and expressed in terms of the language, Modula.

This is a classic paper introducing Modula and concurrency primitives in a high-level language.
The producer/consumer problem and device drivers are discussed. Mutual exclusicn is
handled via semaphores (i.e., signals). Language and system requirements for real-time
programming are discussed: processes, monitors for shared data and a mechanism for
triggering continuation after a process has completed suspension. Implementations must
be able to provide accurate execution time bounds for any compiled statement or state-
ment sequence. A discipline for programming in Modula is summarized.

CMU/SEI-87-TR-26 99

UNLIMITED, UNC1.ASF EDTT/
WECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
li REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE S
2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPOR

T
%04%

N/A APPROVED FOR PUBLIC RELEASE -

2b. DECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED 'A

N/A
A PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-26 ESD-TR-87-189
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

SOFTWARE ENGINEERING INSTITUTE. SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

go NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Bc ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO NO NO NO
PITTSBI]RCH. PA 15213 N/A N/A N/A ,.

11 TITLE (Include Security Classificatlon)

Ada for Embedded Systems: Issues and Questions ____

12. PERSONAL AUTHOR(S)
Nelson H. Weiderman et al

13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo.. Dayl 15 PAGE COUNT

FINAL JFROM TO December 1987 100
16. SUPPLEMENTARY NOTATION P

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Ada real-time
AEST Ada Embedded Systems Testbed
embedded systems

19. ABSTRACT IContlinue on reverse if neceuuarY and identify by block number)

This report addresses issues and questions related to the use of Ada for embedded systems
applications; it contains some preliminary recommendations for compilation system imple-
mentors, application developers, program managers, and Ada policy makers. The issues and
questions provide the context for the Ada Embedded System Testbed (AEST) Project at the
Software Engineering Institute, where staff members are investigating software development
and performance issues for real-time embedded systems.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITED 12 SAME AS APT. 0 OTtC USERS U UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(include Artae Codei 1

C KARL SHINGLER (412) 268-7630 SEI JPO

DD FORM 1473 R3 APR EDITION OF I JAN 73 IS OBSOLETE UNlIMITED. UNCLASSIFIED
~ 9p1 V ~' . ~ .' . :. pP .4 ~ p

-s

ii

~ -

* ** *~

ii S

.i V

-. *p.
?*

0

S

y
m'~.
h

0~

~ ~ - 4-~rv. p\w\U W% %W * .~ , .*..~ **'*% \~ .. % %
-U -* - S *~

